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a b s t r a c t 

Context: Inconsistency detection and resolution is critical for context-aware applications to ensure their 

normal execution. Contexts, which refer to pieces of environmental information used by applications, are 

checked against consistency constraints for potential errors. However, not all detected inconsistencies are 

caused by real context problems. Instead, they might be triggered by improper checking timing. Such incon- 

sistencies are ephemeral and usually harmless. Their detection and resolution is unnecessary, and may even 

be detrimental. We name them inconsistency hazards. 

Objective: Inconsistency hazards should be prevented from being detected or resolved, but it is not straight- 

forward since their occurrences resemble real inconsistencies. In this article, we present SHAP , a pattern- 

learning based approach to suppressing the detection of such hazards automatically. 

Method: Our key insight is that detection of inconsistency hazards is subject to certain patterns of context 

changes. Although such patterns can be difficult to specify manually, they may be learned effectively with 

data mining te chniques. With these patterns, we can reasonably schedule inconsistency detections. 

Results: The experimental results show that SHAP can effectively suppress the detection of most inconsis- 

tency hazards (over 90%) with negligible overhead. 

Conclusions: Comparing with other approaches, our approach can effectively suppress the detection of in- 

consistency hazards, and at the same time allow real inconsistencies to be detected and resolved timely. 

© 2015 Elsevier B.V. All rights reserved. 

1. Introduction 

Context-awareness is one of the most primary requirements of 

pervasive computing such as smart-spaces, health-care systems and 

miscellaneous mobile applications. These applications use context 

information collected from their environment to automatically ad- 

just their behavior and provide smart services for users. Various 

context sources are available. For example, most smartphones are 

equipped with more than 10 types of sensors, 1 including GPS sen- 

sors, accelerometers, magnetic sensors, and so on. RFID technol- 

ogy is also widely used for tracking people, animals or cargoes. Be- 

sides these hardware-based sources, software-based context sources 

are also common. Indoor location contexts can be derived from 

WiFi or magnetic readings [25] , and acceleration contexts can be 

used to detect human activities, such as walking, sitting or falling 

events [26] . Diverse context sources allow applications to be aware of 

their environmental conditions. However, contexts can themselves be 
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1 http://developer.android.com/guide/topics/sensors/sensors_overview.html 

inaccurate due to inevitable measurement errors or improper context 

reasoning. For example, RFID devices have been reported to be sub- 

ject to duplicated reads, missing reads and cross reads [15] . 

Such inaccuracy can lead to the inconsistency [29] problem, which 

means that contexts can be imprecise, incomplete or even conflicting 

with each other. Context inconsistency is found to be common and 

may affect applications unexpectedly [23] . Thus context inconsisten- 

cies should be detected and resolved in time. One popular approach 

is to use consistency constraints [29] to specify the properties that 

must hold concerning the context data used by an application. Such 

constraints can be formulated from physical laws, common senses 

and other domain-specific rules defined according to certain applica- 

tion requirements. Typically, consistency constraints should be eval- 

uated as soon as application’s environment changes for its adapta- 

tion timeliness. If any constraint is violated (i.e., evaluated to a truth 

value false , or false for short), an inconsistency is said “detected ”

[29] , and should be resolved [1,28] . However, this common practice 

may be subject to numerous false alarms. A significant part of de- 

tected inconsistencies may not be caused by inaccurate context data, 

but by improper detection timings. We illustrate this problem by the 

example below: 

http://dx.doi.org/10.1016/j.infsof.2015.08.003 
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Fig. 1. Example scenario of inconsistency hazards. 

A hospital deployed a smart system to help doctors and patients 

with their daily tasks. This system automatically monitors patients’ 

vital signs and periodically informs their doctors on duty. In case 

of emergency, it would immediately notify doctors nearby for treat- 

ment. Each doctor is attached with an RFID tag for location tracking 

and carries a smartphone for receiving notifications from the system. 

Suppose that doctor Lucia leaves Room A and then enters Room B. 

The system’s deployed sensors would capture such movement events 

as “Lucia disappears from Room A ” and “Lucia appears in Room B ” to 

update the system’s context information. However, sensors may fail 

to capture some events due to noises, say, missing the “disappearing ”

event. This would make the system think of Lucia appearing in both 

rooms at the same time, which clearly violates physical laws. An in- 

consistency would result due to this violation and should be resolved 

before contexts involved in inconsistency (named inconsistent con- 

texts ) are used by the system. 

In the real world, a single event can trigger a group of related 

changes to context information, and these changes may be sensed 

and reported by different context sources with different update rates. 

If a consistency constraint is evaluated when only part of these 

changes have taken effect while others have not yet, this constraint 

may behave as being violated, leading to detection of an inconsis- 

tency. However, this inconsistency can be merely a false alarm, as 

later it would be gone spontaneously after other related changes are 

applied. In this case, this detected inconsistency does not indicate real 

context problems, but instead is transiently caused by scheduling in- 

consistency detection when not all contexts are ready. Such incon- 

sistencies do not require resolution, and if resolved, they may cause 

unexpected consequences instead. We name such false alarms in- 

consistency hazards , which conceptually resemble hazards in digital 

circuits [21] . 

Consider our earlier example. Suppose that the location sensor in- 

stalled in Room A updates at a lower rate (say, 10 s) than the one in 

Room B (say, 8 s). It can be the case that some changes (e.g., event 

“Lucia appears in Room B”) are received and then applied earlier than 

other related changes (e.g., event “Lucia disappears in Room A”). If in- 

consistency detection is right scheduled between these two batches 

of changes (i.e., related changes are isolated), an inconsistency hazard 

would be detected, as shown in Fig. 1 . If this hazard is treated as a real 

inconsistency, it may be resolved by removing the existence of Lucia 

from Room B to avoid violating physical laws. As a result, her latest 

location information would be missed due to this false alarm. 

We observe that inconsistency hazards can occupy a significant 

proportion of all detected inconsistencies, ranging from 8.1% to 62.2% 

in our investigated three context-aware applications (discussed later 

in evaluation). Detecting and resolving these hazards as real incon- 

sistencies can waste valuable computing resources, which should in- 

stead be used for other application functionalities. Besides, some con- 

text information, which is actually valid, might be wrongly updated 

or deleted to resolve these hazards, and thus affect the execution 

of concerned applications. Hence, inconsistency hazards should be 

recognized or their detection should be suppressed, and this should 

preferably be done in an automated way. 

However, it is not easy to tell whether a detected inconsistency is 

a real inconsistency or a hazard as they are both caused by violation 

of consistency constraints. In this article, we aim to address this prob- 

lem by suppressing detection of inconsistency hazards by learned 

patterns. Our key observation is that constraint checking is subject to 

inconsistency hazard only under certain patterns of context changes. 

These patterns might not be easily specified manually, but can be 

effectively learned from historical inconsistency detection data with 

data mining techniques. One can use this knowledge to schedule in- 

consistency detection to effectively suppress potential hazards. We 

name our approach SHAP , which stands for S uppressing Inconsistency 

HA zards with P attern-Learning . SHAP was initially reported in [24] , 

and in this article we extend it and proposed a new strategy named 

SHAP 

+ , which is more effective in suppressing inconsistency hazards 

with very short delay. The new strategy is compared with existing 

strategies on our experimental subjects, and more results have been 

presented. 

The remainder of this article is organized as follows. Section 2 in- 

troduces background knowledge about context inconsistency detec- 

tion and Section 3 further explains our inconsistency hazard problem. 

Sections 4 and 5 elaborate on our approach for hazard suppression, 

with focus on detection scheduling and pattern learning, respectively. 

Section 6 evaluates our SHAP approach experimentally. Section 7 dis- 

cusses related work, and finally Section 8 concludes this article. 

2. Background 

In this section, we introduce background concepts concerning 

context inconsistency detection. 

2.1. Context modeling 

A context refers to a piece of information that can be used to char- 

acterize the situation of an entity [5] , and context modeling explains 

how contexts are represented. Various context modeling techniques 

have been proposed [16] . In this article we model a context as a fi- 

nite set of associated elements, each of which specifies one aspect 

concerning its targeted entity. An element can have several fields , and 

each field contains a numerical or textual value. For example, the cur- 

rent status of a doctor (e.g., { location : Ward 3824, name : Lucia , ���}) 

can be such an element. Then, all such elements can compose a con- 

text DOCT , representing all doctors currently in this hospital. An ap- 

plication can use various contexts. We use a context pool to collect all 

contexts interesting to an application. Besides DOCT , the pool can also 

contain other contexts about indoor environmental information (e.g., 

temperature, humidity, etc.) and conditions of patients in each ward 

of this hospital. 

By definition, a context naturally supports three operations: 

adding a new element into, deleting an existing element from, or 

updating an existing element in a context. We name these operations 

context changes . A context change is modeled as a tuple ( t, c, e ), where 

t represents the type of the change (i.e., add, delete or update ) and 

c represents the context this change is to be applied to. The concrete 

element to be affected (i.e., added, deleted or updated) is represented 

by e . 

We note that our model is suitable for both environmental con- 

texts and logical contexts. There is no difference between the treat- 

ments for different types of contexts. 

2.2. Inconsistency detection 

Consistency is an important property for computer systems, such 

as distributed systems [4] and database systems [7] . Contexts used by 

context-aware applications are also obliged to consistency. We check 

contexts against pre-specified consistency constraints to ensure con- 

sistency [29] . These constraints can be expressed using the following 

first-order logic based language: 

f := ∀ e ∈ C( f )|∃ e ∈ C( f )| ( f ) ∧ ( f )| ( f ) ∨ ( f )

| ( f ) → ( f )|¬ ( f )| bfunc (param, · · · , param). (1) 
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