
Information and Software Technology 74 (2016) 219–229

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Suppressing detection of inconsistency hazards with pattern learning

Wang Xi a , b , Chang Xu

a , b , ∗, Wenhua Yang

a , b , Xiaoxing Ma

a , b , Ping Yu

a , b , Jian Lu

a , b

a State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
b Department of Computer Science and Technology, Nanjing University, Nanjing, China

a r t i c l e i n f o

Article history:

Received 19 March 2015

Revised 12 August 2015

Accepted 19 August 2015

Available online 28 August 2015

Keywords:

Context inconsistency

Inconsistency hazard

Pattern learning

a b s t r a c t

Context: Inconsistency detection and resolution is critical for context-aware applications to ensure their

normal execution. Contexts, which refer to pieces of environmental information used by applications, are

checked against consistency constraints for potential errors. However, not all detected inconsistencies are

caused by real context problems. Instead, they might be triggered by improper checking timing. Such incon-

sistencies are ephemeral and usually harmless. Their detection and resolution is unnecessary, and may even

be detrimental. We name them inconsistency hazards.

Objective: Inconsistency hazards should be prevented from being detected or resolved, but it is not straight-

forward since their occurrences resemble real inconsistencies. In this article, we present SHAP , a pattern-

learning based approach to suppressing the detection of such hazards automatically.

Method: Our key insight is that detection of inconsistency hazards is subject to certain patterns of context

changes. Although such patterns can be difficult to specify manually, they may be learned effectively with

data mining te chniques. With these patterns, we can reasonably schedule inconsistency detections.

Results: The experimental results show that SHAP can effectively suppress the detection of most inconsis-

tency hazards (over 90%) with negligible overhead.

Conclusions: Comparing with other approaches, our approach can effectively suppress the detection of in-

consistency hazards, and at the same time allow real inconsistencies to be detected and resolved timely.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Context-awareness is one of the most primary requirements of

pervasive computing such as smart-spaces, health-care systems and

miscellaneous mobile applications. These applications use context

information collected from their environment to automatically ad-

just their behavior and provide smart services for users. Various

context sources are available. For example, most smartphones are

equipped with more than 10 types of sensors, 1 including GPS sen-

sors, accelerometers, magnetic sensors, and so on. RFID technol-

ogy is also widely used for tracking people, animals or cargoes. Be-

sides these hardware-based sources, software-based context sources

are also common. Indoor location contexts can be derived from

WiFi or magnetic readings [25] , and acceleration contexts can be

used to detect human activities, such as walking, sitting or falling

events [26] . Diverse context sources allow applications to be aware of

their environmental conditions. However, contexts can themselves be

∗ Corresponding author. Tel.: +86 25 89680919.

E-mail address: changxu@nju.edu.cn , changxu.cn@gmail.com (C. Xu).
1 http://developer.android.com/guide/topics/sensors/sensors_overview.html

inaccurate due to inevitable measurement errors or improper context

reasoning. For example, RFID devices have been reported to be sub-

ject to duplicated reads, missing reads and cross reads [15] .

Such inaccuracy can lead to the inconsistency [29] problem, which

means that contexts can be imprecise, incomplete or even conflicting

with each other. Context inconsistency is found to be common and

may affect applications unexpectedly [23] . Thus context inconsisten-

cies should be detected and resolved in time. One popular approach

is to use consistency constraints [29] to specify the properties that

must hold concerning the context data used by an application. Such

constraints can be formulated from physical laws, common senses

and other domain-specific rules defined according to certain applica-

tion requirements. Typically, consistency constraints should be eval-

uated as soon as application’s environment changes for its adapta-

tion timeliness. If any constraint is violated (i.e., evaluated to a truth

value false , or false for short), an inconsistency is said “detected ”

[29] , and should be resolved [1,28] . However, this common practice

may be subject to numerous false alarms. A significant part of de-

tected inconsistencies may not be caused by inaccurate context data,

but by improper detection timings. We illustrate this problem by the

example below:

http://dx.doi.org/10.1016/j.infsof.2015.08.003

0950-5849/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2015.08.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.08.003&domain=pdf
mailto:changxu@nju.edu.cn
mailto:changxu.cn@gmail.com
http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://dx.doi.org/10.1016/j.infsof.2015.08.003

220 W. Xi et al. / Information and Software Technology 74 (2016) 219–229

Actual events

Received events

Inc. disappearingInc. detected

(−, Lucia, RoomA) (+, Lucia,RoomB)

Fig. 1. Example scenario of inconsistency hazards.

A hospital deployed a smart system to help doctors and patients

with their daily tasks. This system automatically monitors patients’

vital signs and periodically informs their doctors on duty. In case

of emergency, it would immediately notify doctors nearby for treat-

ment. Each doctor is attached with an RFID tag for location tracking

and carries a smartphone for receiving notifications from the system.

Suppose that doctor Lucia leaves Room A and then enters Room B.

The system’s deployed sensors would capture such movement events

as “Lucia disappears from Room A ” and “Lucia appears in Room B ” to

update the system’s context information. However, sensors may fail

to capture some events due to noises, say, missing the “disappearing ”

event. This would make the system think of Lucia appearing in both

rooms at the same time, which clearly violates physical laws. An in-

consistency would result due to this violation and should be resolved

before contexts involved in inconsistency (named inconsistent con-

texts) are used by the system.

In the real world, a single event can trigger a group of related

changes to context information, and these changes may be sensed

and reported by different context sources with different update rates.

If a consistency constraint is evaluated when only part of these

changes have taken effect while others have not yet, this constraint

may behave as being violated, leading to detection of an inconsis-

tency. However, this inconsistency can be merely a false alarm, as

later it would be gone spontaneously after other related changes are

applied. In this case, this detected inconsistency does not indicate real

context problems, but instead is transiently caused by scheduling in-

consistency detection when not all contexts are ready. Such incon-

sistencies do not require resolution, and if resolved, they may cause

unexpected consequences instead. We name such false alarms in-

consistency hazards , which conceptually resemble hazards in digital

circuits [21] .

Consider our earlier example. Suppose that the location sensor in-

stalled in Room A updates at a lower rate (say, 10 s) than the one in

Room B (say, 8 s). It can be the case that some changes (e.g., event

“Lucia appears in Room B”) are received and then applied earlier than

other related changes (e.g., event “Lucia disappears in Room A”). If in-

consistency detection is right scheduled between these two batches

of changes (i.e., related changes are isolated), an inconsistency hazard

would be detected, as shown in Fig. 1 . If this hazard is treated as a real

inconsistency, it may be resolved by removing the existence of Lucia

from Room B to avoid violating physical laws. As a result, her latest

location information would be missed due to this false alarm.

We observe that inconsistency hazards can occupy a significant

proportion of all detected inconsistencies, ranging from 8.1% to 62.2%

in our investigated three context-aware applications (discussed later

in evaluation). Detecting and resolving these hazards as real incon-

sistencies can waste valuable computing resources, which should in-

stead be used for other application functionalities. Besides, some con-

text information, which is actually valid, might be wrongly updated

or deleted to resolve these hazards, and thus affect the execution

of concerned applications. Hence, inconsistency hazards should be

recognized or their detection should be suppressed, and this should

preferably be done in an automated way.

However, it is not easy to tell whether a detected inconsistency is

a real inconsistency or a hazard as they are both caused by violation

of consistency constraints. In this article, we aim to address this prob-

lem by suppressing detection of inconsistency hazards by learned

patterns. Our key observation is that constraint checking is subject to

inconsistency hazard only under certain patterns of context changes.

These patterns might not be easily specified manually, but can be

effectively learned from historical inconsistency detection data with

data mining techniques. One can use this knowledge to schedule in-

consistency detection to effectively suppress potential hazards. We

name our approach SHAP , which stands for S uppressing Inconsistency

HA zards with P attern-Learning . SHAP was initially reported in [24] ,

and in this article we extend it and proposed a new strategy named

SHAP

+ , which is more effective in suppressing inconsistency hazards

with very short delay. The new strategy is compared with existing

strategies on our experimental subjects, and more results have been

presented.

The remainder of this article is organized as follows. Section 2 in-

troduces background knowledge about context inconsistency detec-

tion and Section 3 further explains our inconsistency hazard problem.

Sections 4 and 5 elaborate on our approach for hazard suppression,

with focus on detection scheduling and pattern learning, respectively.

Section 6 evaluates our SHAP approach experimentally. Section 7 dis-

cusses related work, and finally Section 8 concludes this article.

2. Background

In this section, we introduce background concepts concerning

context inconsistency detection.

2.1. Context modeling

A context refers to a piece of information that can be used to char-

acterize the situation of an entity [5] , and context modeling explains

how contexts are represented. Various context modeling techniques

have been proposed [16] . In this article we model a context as a fi-

nite set of associated elements, each of which specifies one aspect

concerning its targeted entity. An element can have several fields , and

each field contains a numerical or textual value. For example, the cur-

rent status of a doctor (e.g., { location : Ward 3824, name : Lucia , ���})

can be such an element. Then, all such elements can compose a con-

text DOCT , representing all doctors currently in this hospital. An ap-

plication can use various contexts. We use a context pool to collect all

contexts interesting to an application. Besides DOCT , the pool can also

contain other contexts about indoor environmental information (e.g.,

temperature, humidity, etc.) and conditions of patients in each ward

of this hospital.

By definition, a context naturally supports three operations:

adding a new element into, deleting an existing element from, or

updating an existing element in a context. We name these operations

context changes . A context change is modeled as a tuple (t, c, e), where

t represents the type of the change (i.e., add, delete or update) and

c represents the context this change is to be applied to. The concrete

element to be affected (i.e., added, deleted or updated) is represented

by e .

We note that our model is suitable for both environmental con-

texts and logical contexts. There is no difference between the treat-

ments for different types of contexts.

2.2. Inconsistency detection

Consistency is an important property for computer systems, such

as distributed systems [4] and database systems [7] . Contexts used by

context-aware applications are also obliged to consistency. We check

contexts against pre-specified consistency constraints to ensure con-

sistency [29] . These constraints can be expressed using the following

first-order logic based language:

f := ∀ e ∈ C(f)|∃ e ∈ C(f)| (f) ∧ (f)| (f) ∨ (f)

| (f) → (f)|¬ (f)| bfunc (param, · · · , param). (1)

Download English Version:

https://daneshyari.com/en/article/550484

Download Persian Version:

https://daneshyari.com/article/550484

Daneshyari.com

https://daneshyari.com/en/article/550484
https://daneshyari.com/article/550484
https://daneshyari.com

