
Information and Software Technology 69 (2016) 16–36

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Requirements modeling languages for software product lines:

A systematic literature review�

Samuel Sepúlveda a,∗, Ania Cravero a, Cristina Cachero b

a Departamento de Ciencias de la Computación e Informática, Centro de Estudios en Ingeniería de Software, Universidad de La Frontera,

Casilla 54-D, Temuco, Chile
b Departamento de Lenguajes y Sistemas Informáticos, Universidad de Alicante, España

a r t i c l e i n f o

Article history:

Received 20 February 2015

Revised 26 August 2015

Accepted 27 August 2015

Available online 7 September 2015

Keywords:

Requirements engineering

Modeling languages

Software product lines

Systematic literature review

a b s t r a c t

Context: Software product lines (SPLs) have reached a considerable level of adoption in the software indus-

try, having demonstrated their cost-effectiveness for developing higher quality products with lower costs.

For this reason, in the last years the requirements engineering community has devoted much effort to the

development of a myriad of requirements modelling languages for SPLs.

Objective: In this paper, we review and synthesize the current state of research of requirements modelling

languages used in SPLs with respect to their degree of empirical validation, origin and context of use, level of

expressiveness, maturity, and industry adoption.

Method: We have conducted a systematic literature review with six research questions that cover the main

objective. It includes 54 studies, published from 2000 to 2013.

Results: The mean level of maturity of the modelling languages is 2.59 over 5, with 46% of them falling within

level 2 or below -no implemented abstract syntax reported-. They show a level of expressiveness of 0.7 over

1.0. Some constructs (feature, mandatory, optional, alternative, exclude and require) are present in all the lan-

guages, while others (cardinality, attribute, constraint and label) are less common. Only 6% of the languages

have been empirically validated, 41% report some kind of industry adoption and 71% of the languages are

independent from any development process. Last but not least, 57% of the languages have been proposed by

the academia, while 43% have been the result of a joint effort between academia and industry.

Conclusions: Research on requirements modeling languages for SPLs has generated a myriad of languages that

differ in the set of constructs provided to express SPL requirements. Their general lack of empirical validation

and adoption in industry, together with their differences in maturity, draws the picture of a discipline that

still needs to evolve.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The ever-increasing pace at which software customers demand

new products and services has forced the software industry to de-

vise new approaches that increase the productivity of their processes

and the quality of their products. Software product lines (SPLs) are

among these approaches, and can be defined as a family of systems

that share a common set of core technical assets, with preplanned

extensions and variations to address the needs of specific customers

� This document is a collaborative effort.
∗ Corresponding author. Tel.: +56 452744216.

E-mail addresses: samuel.sepulveda@ceisufro.cl (S. Sepúlveda),

ania.cravero@ufrontera.cl (A. Cravero), ccachero@dlsi.ua.es (C. Cachero).

or market segments [1]. The purported benefits of SPLs include a re-

duction in the cycles of product development, productivity increases

by an order of magnitude, cost reductions and a substantial improve-

ment in the quality of products [2,3].

The aim of this paper is to account for and synthesize the current

state of research reported in the literature with respect to the de-

gree of empirical validation, origin and context of use, level of expres-

siveness, maturity, and industry adoption of existing requirements

modeling languages used in SPLs. For some of these aspects the moti-

vation is to update the results of previous SLRs to cover the period be-

tween 2009 and 2013, and check for improvement tendencies in the

field. In particular, that is the case of industry adoption and degree of

empirical validation of the languages, which, as will be discussed in

Section 5, have been repeatedly pointed out as important deficiencies

of the field.

http://dx.doi.org/10.1016/j.infsof.2015.08.007

0950-5849/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2015.08.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.08.007&domain=pdf
mailto:samuel.sepulveda@ceisufro.cl
mailto:ania.cravero@ufrontera.cl
mailto:ccachero@dlsi.ua.es
http://dx.doi.org/10.1016/j.infsof.2015.08.007


S. Sepúlveda et al. / Information and Software Technology 69 (2016) 16–36 17

Also, we include other aspects that had been ignored in these pre-

vious studies, namely the level of expressiveness and maturity of the

different modeling languages. The reason for this inclusion is that

there are several challenges associated with the use of these lan-

guages that are related with these two aspects [4–7]. One of these

challenges refers to the lack of a proper conceptual foundation, which

causes significant differences in the set of concepts included in each

language. In this paper, we have analyzed the pervasiveness of this

problem in the field through both the analysis of the level of expres-

siveness of each language and its maturity level. Another challenge

refers to a limited tool support. This aspect has also been addressed

through the analysis of the maturity level of the different languages.

This review may be of interest to industry professionals who wish

to get an updated view of the extent to which these modeling lan-

guages have been applied and validated, and which are their short-

comings and strengths in terms of expressive power and maturity.

This knowledge will put them in a better position to assess the poten-

tial benefits and risks associated with adopting each modeling lan-

guage. Also, it is of interest to researchers looking for gaps in research

or planning to embark on additional studies on requirements model-

ing languages for SPLs.

We have conducted a systematic literature review (SLR) to iden-

tify and assess the set of relevant papers that could help to answer

our research questions (RQs) [8]. Unlike a peer review, an SLR is a

rigorous methodological review of research results, the aim of which

is not only to provide all the relevant evidence – based on a set of a

priori established criteria – to answer an RQ, but also to support the

development of evidence-based directives for professionals [9].

The remainder of this paper is organized as follows. Section 2

shows some concepts related to SPLs and variability. Section 3 ex-

plains the SLR methodology. Section 4 provides a discussion about

our main findings and results. Section 5 outlines the main related

work. Finally, Section 6 presents the conclusions and further lines of

research.

2. Background

SPLs can provide significant gains in quality and productivity

through systematic reuse of software conceptual structures [10] and

the provision of mechanism to define system adaptation and configu-

ration options [11]. For systems such as embedded safety- or mission-

critical ones, much of the development effort goes into understand-

ing, specifying, and validating the requirements. If developers can

re-use rather than re-do requirements for families of similar systems,

they can improve productivity while significantly reducing the op-

portunity of requirements errors [10].

One of the key concepts in SPLs is variability, which provides

the required flexibility for product differentiation and diversification

[12]. Variability is defined as the ability of SPLs to be exchanged, cus-

tomized, configured or extended to be of use in a specific context,

and this is introduced through alternative definitions of reusable de-

vices, included in the family of software products, that give rise to

different products [13]. For example, a company developing Smart

Home Systems (a system that observes and controls properties of a

house) may need to be able to adapt them to each customer’s home.

Also, they need to be able to leave configuration choices to the cus-

tomer and specificities to address different market segments. These

variability needs makes this kind of system a typical example of

SPL [14].

Variability management is considered one of the key aspects that

distinguish SPLs from other software development approaches. It in-

volves extremely complex and challenging tasks that must be sup-

ported by appropriate methods, techniques, and tools [12]. To date,

several representations of variability, together with mechanisms

that facilitate its systematic exploitation, have been reported in the

literature, and some efforts have been made to unify the concepts

and relations of the field [15].

In order to model such variability, methods can be broadly catego-

rized in two groups: the feature-based group, which comprises meth-

ods that model the common and variable features of a product family

(an analysis-oriented perspective), and the architecture-based group,

which includes methods that describe variability in terms of com-

ponents, interfaces, connectors and so on (a more design-oriented

perspective) [49]. At the requirements engineering (RE) stage the fo-

cus is on the first group, that is, languages based on the modeling of

features.

In the RE context, the term feature is a problem-oriented concept

that refers to a prominent or distinctive user-visible aspect, quality or

characteristic of a software system or systems [11]. Back to our exam-

ple of a Smart Home System SPL, in this kind of system it is common

to find a feature to model security issues. This feature will be fur-

ther decomposed in sub-features depending on the different security

mechanisms that the SPL is able to provide (e.g. burglar alarm, police

call) [11].

Most of the complexity of feature languages lies in the interoper-

ation of features, some depending on each other while others being

mutually disruptive [11]. The most popular way to express such in-

teroperation is by means of a feature model (FM) [4]. A FM has a tree-

like structure, with its root node representing the software product

family. The characteristics of the family are organized down the tree.

The FM leaves represent individual or configured components that

can be assembled to generate a particular application [16]. The FM

was first presented as part of the Feature-oriented domain analysis

(FODA) method [17], although this model is now present, with slight

variations, in virtually all the SPL methods that rely on a visual repre-

sentation of product characteristics.

3. Research methodology

As previously mentioned, this study has been carried out ac-

cording to the SLR methodology described by Kitchenham and

Charters [9].

In this paper, we use the term SLR in its broad sense. The reason

is that our contribution sits in between that of a mapping study and

that of a conventional SLR, which are the two more common types

of secondary studies in the discipline [18]. While this study cannot

be categorized as a conventional SLR (whose objective is the com-

pilation of all relevant quantitative data regarding an RQ and the

execution of some sort of meta-analysis), it does not fit well under

the category of mapping studies either. Mapping studies, according

to Kitchenham et al. [19], aim to “identify all research related to a

specific topic rather than addressing the specific questions that con-

ventional SLRs address”. Similarly, Petersen et al. [20] indicate that

a systematic map is a method to build a classification scheme and

structure a Software Engineering (SE) field of interest. The analysis

of results focuses on frequencies of publications for categories within

the scheme. Thereby, the coverage of the research field can be deter-

mined. In this paper, we have identified the existing research related

with our topic of interest (requirements engineering languages for

SPLs). We have classified the existing research and we have analyzed

trends regarding the pace of publications and the evolution in the use

of different notations along time. Additionally, we have analyzed the

individual characteristics of the existing requirements modeling lan-

guages in SPLs, and this has driven the inclusion of RQs that involve

in-depth analyses of each language.

Next, in Section 3.1 we define the SLR protocol. Then, in Section 3.2

we describe the study selection and the data extraction process

whose outcome is the final list of papers included in our SLR. Fig. 1

depicts the whole process.



Download English Version:

https://daneshyari.com/en/article/550494

Download Persian Version:

https://daneshyari.com/article/550494

Daneshyari.com

https://daneshyari.com/en/article/550494
https://daneshyari.com/article/550494
https://daneshyari.com

