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Abstract: This paper develops a distributed stochastic subgrandient-based support vector machine algorithm when training
data to train support vector machines are distributed in the network. In this situation, all the data are decentralized stored and
unavailable to all agents and each agent has to make its own update based on its computation and communication with neighbors.
With mild connectivity conditions, we show the convergence of the proposed algorithm even though the network topology is
time-varying. Convergent rate is also given for the proposed algorithm. Moreover, we provide numerical simulations on a real
classification training set to illustrate the effectiveness of the fully distributed algorithm.
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1 Introduction

In recent years, supervised machine learning can address

many applications in knowledge discovery, pattern recogni-

tion, and data mining [1, 2], due to recent advances in ma-

chine learning. The supervised classification problem is of

vital importance for machine learning. The support vector

machine (SVM), with each applicability, data sparsity, and

global optimality, is one of the most popular classification

algorithms in many practical fields [3, 4].

Most designs of SVM algorithms are basically central-

ized. However, the increasing challenges following the large

size of networks and decentralized storage makes people

tend to investigate SVM training methods quite independent

of some centers when each agent only has limited data. One

of the effort to deal with the complicated situation is the par-

allel designs of SVMs [5, 6], where there is a center basically

for the job assignment. When the training data set is ex-

tremely large, partial SVMs are obtained using small training

subsets and combined at a central unit. However, because of

the dependence of some centers, these algorithms still have

some weak points.

To further solve the problem, distributed support vector

machines (DSVMs) are needed to get rid of any centers or

central units for the achievement of the tasks. In fact, in

the distributed design, the communication bandwidth and

energy may ask us to pay more attention to the local com-

putation of each agent and reduce, if possible, the commu-

nication workload in large-scale networks, which is not an

easy job. There are some efforts for the design distributed

SVMs. For example, [7] adopted the alternating direction

method of multipliers [8]. The algorithm was proposed for

the fixed topologies, which may fail when some link failures

occur. Also, [9] and [10] relied on gossip-based stochastic

support vectors obtained from local training data sets in the

network. From the point of information privacy, it is not so

good to exchange rare support vectors.

The motivation of this paper is to study a efficient dis-

tributed SVM algorithm in a time-varying communication

network. Therefore, we propose and then analyze distributed

stochastic subgrandient-based support vector machine algo-

rithm. In this paper, we consider that each agent in the net-

work can have access to local training subsets and can share

information with its one-hop neighbours. To be specific, the

technical contribution of the paper includes:

• Distributed design for time-varying networks: Dif-

ferent from [7], we propose a distributed stochastic

subgrandient-based support vector machine algorithm

based on jointly-connected networks to reduce commu-

nication workload/cost among agents. Still, compared

with [9] and [10], we build our algorithm based on sub-

gradient of the hyperplane rather than support vectors

for information privacy.

• Convergence analysis: we prove the convergence of the
distributed stochastic subgrandient-based support vec-

tor machine algorithm. Convergence rate is also given

to the proposed algorithm.

The organization of this paper is as follows. Preliminaries

and problem formulation are given in Section 2. Distributed

stochastic subgrandient-based support vector machines algo-

rithm is described in Section 3, with scalability and cinver-

gence analysis. Then the simulation experiment is shown in

Section 4. Finally, the conclusions are presented in Section

5.

2 Preliminaries and Problem Formulation

2.1 Preliminaries
In this subsection, some preliminary knowledge related to

convex analysis [11] and graph theory [12] is addressed to

formulate the distributed support vector machine problem.

For a convex function f over a convex set Ω, whose sub-
gradient at a point x is denoted by �f(x), the following in-
equality holds:

f(x) ≥ f(y) + 〈�f(y), x− y〉, ∀x, y ∈ Ω..
Moreover, over the convex set Ω if

f(x) ≥ f(y) + 〈�f(y), x− y〉+ σ

2
||x− y||2, ∀x, y ∈ Ω,

we say f is σ-strongly convex.
Consider a graph G = (M, E(t)) as the information

sharing topology among M agents in the network. M :=
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{1, ...,M} represents the agents sets and E(t) describes the
active commnuicating links among agents at time t. If agent
q is agent i’s one-hop neighbour at time t, which means that
agent i can receive information from agent q directly at time
t, then there exists a directed edge from q to i and denoted by
(q, i) ∈ E . Denote the one-hop neighbours of agent i at time
t asNi(t) = {q|(q, i) ∈ E(t)}. Still, A(t) ∈ RM×M is used

to describe the communication pattern among the agents at

time t, whose elements are defined as follows:

(a) ai
i(t) > 0;

(b) aq
i (t) > 0 for any (q, i) ∈ E(t);

(c) aq
i (t) = 0 for any agents q that are not neighbors of
agent i.

Moreover, we make the following assumptions on the com-

munication pattern of the network.

Assumption 1. The graph G = (M, E(t)) and the weight
matrix A(t) satisfy:

(a) A(t) is doubly stochastic.
(b) For all i ∈M, ai

i(t) ≥ v and aq
i (t) ≥ v if (q, i) ∈ E(t),

where v is a positive scalar.
(c) The graph (M, E(t) ∪ E(t + 1) ∪ · · · ∪ E(t + B − 1)

is strongly connected for all t ≥ 0 and some positive
integer B.

Assumption 1 provides a quite general connectivity con-

dition for the distributed multi-agent system, which has been

widely used in [13, 14].

2.2 Formulation
Describe the structure of the centralized primal non-

separable SVM formulation [15, 16] briefly. Consider the

training sets Si := {(xij , yij) : j = 1, ..., Ni}, where
xij ∈ X is a p × 1 data vector belonging to the input
space X ⊆ Rp and yij ∈ Y := {−1, 1} denotes its cor-
responding class label. Given the local variables w∗

i and b
∗
i ,

the centralized maximum-margin linear discriminant func-

tion h∗i (x) can be described as h
∗
i (x) = w∗�

i x + b∗i . Given
λ > 0, we can state the primal sub-SVM problem for agent

i as follows:

min
wi∈Rd,bi∈R

1

2
w�

i wi +
λ

Ni

Ni∑
j=1

max{1− cij−

yij(w
�
i xij + bi), 0} (1)

where the slack variables cij account for non-linearly sepa-
rable training sets.

Every agent i ∈ M has access to a labeled training set

Si := {(xij , yij) : j = 1, ..., N} of size Ni. In the dis-

tributed fasion, the goal is to find a global maximum-margin

linear discriminant function h(x), which enables each agent
i to classify any new input vector x to one of the two labels
{−1, 1} without sending Ni samples to other agents in the

network.

To this end, consider adding consensus constraints to force

w∗
i and b

∗
i to agree across neighboring agents. We present

a formulation of the primal sub-SVM problem in (1) in a

distributed fasion:

min
wi∈Rd,bi∈R

1

2

M∑
i=1

w�
i wi +

M∑
i=1

λ

Ni

Ni∑
j=1

max{1− cij

− yij(w
�
i xij + bi), 0}

s. t. wi = wq, bi = bq, i ∈M, q ∈M. (2)

Problem (2) can be solved in a distributed fashion. Every

agent i has ability to optimize (1) and also meet the consen-
sus constraintswi = wq , bi = bq , by communicate only with
its one-hop neighbour q. Moreover, Assumption 1 guaran-
tees consensus in neighborhoodsNi for every agent i enables
network-wide consensus, whose mathmatical demonstration

is given in Theorem 1 .

Define for notation brevity:

⎧⎪⎨
⎪⎩
ξi = [w�

i , bi]
�,

Xij = [x�ij , 1]
�,

Yi = diag([Yi1, . . . , YiN ]).

(3)

With (3), it follows that wi = (Ip+1−Πp+1)ξi, where Πp+1

is a (p+1)×(p+1)matrix with zeros everywhere except for
the (p + 1, p + 1)-th entry, given by [Πp+1](p+1)(p+1) = 1.
Thus, problem (2) can be rewritten as

min
ξi∈Rp+1

1

2

M∑
i=1

ξ�i (Ip+1 −Πp+1)ξi +
M∑
i=1

λ

Ni

Ni∑
j=1

max{1− cij

− yijξ
�
i Xij , 0}

s. t. ξi = ξq, i ∈M, q ∈M. (4)

3 Distributed Stochastic Subgrandient-based
Support Vector Machines Algorithm

In order to solve the distributed primal sub-SVM formu-

lation (4), we consider a distributed stochastic subgrandient-

based support vector machines algorithm. Denote Ω =
{||ξ||2 ≤ R} as a bounded closed convex set inRp+1. Con-

sider the following optimization problem

minξ∈Ω F (ξ) =
M∑
i=1

Fi(ξ) =
M∑
i=1

(fi(ξ) +
λ

Ni

Ni∑
j=1

gij(ξ))

where fi(ξ) =
1

2
ξ�(Ip+1 −Πp+1)ξ,

gij(ξ) = max{1− cij − yijξ
�
i Xij , 0}. (5)

Remark 1. We assume Fi(ξ) to be strongly convex overΩ =
{||ξ||2 ≤ R} according to [4]. Therefore, we have that for
all ξ ∈ Ω, ||�fi(ξ)|| ≤ Mf and ||�gi(ξ)|| ≤ Mg . Still, for
function gij(ξ), we assume that there exists an ι > 0 such
that mingi(ξ)=0 ||�g(x)|| ≥ ι.

Note that each Fi is available to agent i only. Sup-

pose �Fij(ξ) is the subgradient of
1

2
ξ�(Ip+1 − Πp+1)ξ +

λmax{1 − cij − yijXijξ, 0}. We propose a distributed

stochastic subgradient-based algorithm [17] to solve prob-

lem (5). This leads to the construction and also the conver-

gent performance of Algorithm 1.

Denote ξ̃i(T ) = PΩ(ξ̂i(T )), where ξ̂i(T ) =
1

T

∑�
t=1 ξi(t). Next, we’ give the convergent property
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