
Information and Software Technology 68 (2015) 18–33

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

On the capability of static code analysis to detect security vulnerabilities

Katerina Goseva-Popstojanova a,∗, Andrei Perhinschi b,1

a Lane Department of Computer Science and Electrical Engineering, West Virginia University, PO Box 6109, Morgantown, WV 26506, United States
b TASC Inc, Fairmont, WV 26554, United States

a r t i c l e i n f o

Article history:

Received 2 January 2015

Revised 16 August 2015

Accepted 18 August 2015

Available online 28 August 2015

Keywords:

Security vulnerabilities

Common Weakness Enumeration (CWE)

Static code analysis evaluation

Experiment

Case studies

a b s t r a c t

Context: Static analysis of source code is a scalable method for discovery of software faults and security vul-

nerabilities. Techniques for static code analysis have matured in the last decade and many tools have been

developed to support automatic detection.

Objective: This research work is focused on empirical evaluation of the ability of static code analysis tools to

detect security vulnerabilities with an objective to better understand their strengths and shortcomings.

Method: We conducted an experiment which consisted of using the benchmarking test suite Juliet to evaluate

three widely used commercial tools for static code analysis. Using design of experiments approach to conduct

the analysis and evaluation and including statistical testing of the results are unique characteristics of this

work. In addition to the controlled experiment, the empirical evaluation included case studies based on three

open source programs.

Results: Our experiment showed that 27% of C/C++ vulnerabilities and 11% of Java vulnerabilities were missed

by all three tools. Some vulnerabilities were detected by only one or combination of two tools; 41% of C/C++

and 21% of Java vulnerabilities were detected by all three tools. More importantly, static code analysis tools

did not show statistically significant difference in their ability to detect security vulnerabilities for both C/C++

and Java. Interestingly, all tools had median and mean of the per CWE recall values and overall recall across all

CWEs close to or below 50%, which indicates comparable or worse performance than random guessing. While

for C/C++ vulnerabilities one of the tools had better performance in terms of probability of false alarm than

the other two tools, there was no statistically significant difference among tools’ probability of false alarm for

Java test cases.

Conclusions: Despite recent advances in methods for static code analysis, the state-of-the-art tools are not

very effective in detecting security vulnerabilities.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Today’s economy is heavily reliant on computer systems and

networks and many sectors, including finance, e-commerce, supply

chain, transportation, energy, and health care cannot function with-

out them. The growth of the online commercial environment and as-

sociated transactions, and the increasing volume of sensitive infor-

mation accessible online have fueled the growth of cyber attacks by

organized criminal elements and other adversaries [1]. According to

the 2014 report by the Ponemon Institute, the mean annualized cost

∗ Corresponding author. Tel.: + 1 304 293 9691.

E-mail address: Katerina.Goseva@mail.wvu.edu, katerina.goseva@gmail.com (K.

Goseva-Popstojanova).
1 This work was done while Andrei Perhinschi was affiliated with West Virginia

University.

of the cyber crime for 257 benchmarked organizations was $7.6 mil-

lion per year, with average of 31 days to contain a cyber attack [2].

Deficiencies in software quality are among leading reasons behind

security vulnerabilities. Vulnerability is defined as a property of sys-

tem security requirements, design, implementation, or operation that

could be accidentally triggered or intentionally exploited and result

in a security failure [3]. Basically, if a security failure has been experi-

enced, there must have been a vulnerability. Based on the estimates

made by the National Institute of Standards and Technology (NIST),

the US economy loses $60 billion annually in costs associated with

developing and distributing patches that fix software faults and vul-

nerabilities, as well as cost from lost productivity due to computer

malware and other problems caused by software faults [4].

Therefore, it is becoming an imperative to account for security

when software systems are designed and developed, and to extend

the verification and validation capabilities to cover information as-

surance and cybersecurity concerns. Anecdotal evidence [5] and prior

http://dx.doi.org/10.1016/j.infsof.2015.08.002

0950-5849/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2015.08.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.08.002&domain=pdf
mailto:Katerina.Goseva@mail.wvu.edu
mailto:katerina.goseva@gmail.com
http://dx.doi.org/10.1016/j.infsof.2015.08.002

K. Goseva-Popstojanova, A. Perhinschi / Information and Software Technology 68 (2015) 18–33 19

empirical studies [6,7] indicated the need of using a variety of vul-

nerability prevention and discovery techniques throughout software

development cycle. One of these vulnerability discovery techniques

is a static analysis of source code, which provides a scalable way for

security code review that can be used early in the life cycle, does not

require the system to be executable, and can be used on parts of the

overall code base. Tools for static analysis have rapidly matured in the

last decade; they have evolved from simple lexical analysis to employ

much more complex techniques. However, in general, static analy-

sis problems are undecidable [8] (i.e., it is impossible to construct

an algorithm which always leads to a correct answer in every case).

Therefore, static code analysis tools do not detect all vulnerabilities

in source code (i.e., false negatives) and are prone to report findings

which upon closer examination turn out not to be security vulnerabil-

ities (i.e., false positives). To be of practical use, a static code analysis

tool should find as many vulnerabilities as possible, ideally all, with a

minimum amount of false positives, ideally none.

This paper is focused on empirical evaluation of static code analy-

sis tools’ ability to detect security vulnerabilities, with a goal to better

understand their strengths and shortcomings. For this purpose we

chose three state-of-the-art, commercial static code analysis tools,

denoted throughout the paper as tools A, B, and C. The criteria used to

select the tools included: (1) have to be widely used, (2) specifically

identify security vulnerabilities (e.g., using the Common Weakness

Enumeration (CWE) [9]) and support detection of significant num-

ber of different types of vulnerabilities, (3) support C, C++ and Java

languages, and (4) are capable of analyzing large software applica-

tions, i.e., scale well. An additional consideration in the selection pro-

cess was to choose one tool from each of the three main classes of

static code analysis tools [10] (given here in no particular order): ‘pro-

gram verification and property checking’, ‘bug finding’, and ‘security

review’.

With respect to the vulnerabilities included in the evaluation, as

in works focused on software fault detection [11], synthetic vulnera-

bilities can be provided in large numbers, which allow more data to

be gathered than otherwise possible, but likely with less external va-

lidity. On the other side, naturally occurring vulnerabilities typically

cannot be found in large numbers, but they represent actual events.

Obviously either approach has its own advantages and disadvantages;

therefore, we decided to use both approaches.

The first evaluation approach is based on a controlled experiment

using the benchmark test suite Juliet which was originally developed

by the Center for Assured Software at the National Security Agency

(NSA) [12] and is publicly available. Juliet test suite consists of many

sets of synthetically generated test cases; each set covers only one

kind of flaw documented by the Common Weakness Enumeration

(CWE) [9]. Specifically, we used the largest subset of the Juliet test

suite claimed to be detectable by all three tools, which consisted of

22 CWEs for C/C++ and 19 CWEs for Java, with 21,265 and 7516 test

cases, respectively. Testing static code analysis tools with this bench-

mark test suite allowed us: to cover a reasonably large number of

vulnerabilities of many types; to automate the evaluation and com-

putation of the tools’ performance metrics, such as accuracy, recall

(i.e., probability of detection), and probability of false alarm; and to

run statistical tests.

In addition to the experimental approach, our empirical evalua-

tion includes three case studies based on open source programs, two

of which were implemented in C and one implemented in Java. Each

program has a known set of vulnerabilities that allow for quantitative

analysis of the tools’ ability to detect security vulnerabilities. For this

part of the study, because of the relatively small number of known

vulnerabilities the results were obtained by manual inspection of the

static code analysis tools’ outputs. The evaluation based on case stud-

ies allowed us to gauge the ability of static code analysis to detect

security vulnerabilities in more complex settings.

The main contributions of this paper are as follows:

• The experimental evaluation was based on the Juliet test suite, a

benchmark for assessing the effectiveness of static code analyzers

and other software assurance tools. Previous evaluations based on

Juliet either did not report quantitative results [13,14] or used very

small sample of test cases related to vulnerabilities in C code only

[15].

• Our study reports several performance metrics – accuracy, recall,

probability of false alarm, and G-score – for individual CWEs, as

well as across all considered CWEs. We used formal statistical

testing to compare the tools in terms of performance metrics and

determine if any significant differences exist. None of the related

works included statistical testing of the results.

• In addition to the experimental approach, three widely-used open

source programs were used as case studies. By combining exper-

imentation with case studies, we were able to get sound exper-

imental results supported by statistical tests and verify them in

realistic settings.

Main empirical observations include:

• None of the selected tools was able to detect all vulnerabilities.

Specifically, out of the 22 C/C++ CWEs, none of the three tools was

able to detect six CWEs (i.e., 27%), seven CWEs (i.e., 32%) were de-

tected by a single tool or a combination of two tools, and only

nine CWEs (around 41%) were detected by all three tools. The re-

sults obtained when running the Java test cases were similar. Out

of the nineteen CWEs, two CWEs (i.e., around 11%) were not de-

tected by any tool, thirteen CWEs (i.e., 68%) were detected by a

single tool or a combination of two tools, and only four were de-

tected by all three tools. Note that ‘detect’ in this context does

not means detecting 100% of ‘bad’ functions for that specific CWE.

Rather, it means correctly classifying at least one bad function.

• The selected static code analysis tools did not show statistically

significant difference in their ability to detect security vulnerabil-

ities for both C/C++ and Java. In addition, the mean, median, and

overall recall values for all tools were close to or below 50%, which

indicates comparable or worse performance than random guess-

ing.

• For C/C++ vulnerabilities, one of the tools had better performance

in terms of probability of false alarm and accuracy than the other

two tools. No significant difference existed for Java vulnerabilities.

• No statistically significant difference existed in the values of G-

score (i.e., harmonic mean of the recall and 1-probability of false

alarm) neither for C/C++ nor for Java vulnerabilities. (G-score com-

bines in a single measure tools’ effectiveness in detecting secu-

rity vulnerabilities with their ability to discriminate vulnerabili-

ties from non-flawed code constructs.)

• The experimental results related to tools’ ability to detect security

vulnerabilities were confirmed on three open source applications

used as case studies.

The rest of the paper is organized as follows. Related work is pre-

sented in Section 2, followed by the background description of the

structure and organization of the Common Weakness Enumeration

(CWE) and the Juliet test suite in Section 3. The design of the experi-

mental study, its execution, and the analysis per individual CWEs and

across all CWEs, including the results of statistical tests are given in

Section 4. Section 5 presents the findings based on the three open

source case studies. The threats to validity are presented in Section 6,

followed by the discussion of the results in Section 7 and concluding

remarks in Section 8.

2. Related work

Despite the widespread use of static code analysis, only a few pub-

lic evaluation efforts of static code analysis tools have been under-

taken, and even fewer with a focus on detection of security vulnera-

bilities.

Download English Version:

https://daneshyari.com/en/article/550512

Download Persian Version:

https://daneshyari.com/article/550512

Daneshyari.com

https://daneshyari.com/en/article/550512
https://daneshyari.com/article/550512
https://daneshyari.com

