
Information and Software Technology 68 (2015) 82–97

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Towards an operationalization of test-driven development skills: An

industrial empirical study

Davide Fucci a,∗, Burak Turhan a, Natalia Juristo a,b, Oscar Dieste a, Ayse Tosun-Misirli c,
Markku Oivo a

a M-Group, University of Oulu, 90014 Oulu, Finland
b Escuela Tecnica Superior de Ingenieros Informaticos, Universidad Politecnica de Madrid, Campus Montegancedo, Calle ciruelos, s/n, 28660 Boadilla del Monte,

Madrid, Spain
c Faculty of Computer and Informatics, Istanbul Technical University, 34469 Maslak Istanbul, Turkey

a r t i c l e i n f o

Article history:

Received 11 March 2015

Revised 22 August 2015

Accepted 23 August 2015

Available online 8 September 2015

Keywords:

Test-driven development

Process conformance

Software quality

Developers’ productivity

a b s t r a c t

Context: The majority of the empirical studies on Test-driven development (TDD) are concerned with ver-

ifying or refuting the effectiveness of the technique over a traditional approach, and they tend to neglect

whether the subjects possess the necessary skills to apply TDD, though they argue such skills are necessary.

Objective: We evaluate a set of minimal, a priori and in process skills necessary to apply TDD. We determine

whether variations in external quality (i.e., number of defects) and productivity (i.e., number of features im-

plemented) can be associated with different clusters of the TDD skills’ set.

Method: We executed a quasi-experiment involving 30 practitioners from industry. We first grouped the

participants according to their TDD skills’ set (consisting of a priori experience on programming and testing

as well as in-process TDD conformance) into three levels (Low-Medium-High) using k-means clustering. We

then applied ANOVA to compare the clusters in terms of external quality and productivity, and conducted

post-hoc pairwise analysis.

Results: We did not observe a statistically significant difference between the clusters either for external soft-

ware quality (F(2, 27 = 1.44, p = .260), or productivity (F(2, 27) = 3.02, p = .065). However, the analysis of

the effect sizes and their confidence intervals shows that the TDD skills’ set is a factor that could account for

up to 28% of the external quality, and 38% for productivity.

Conclusion: We have reason to conclude that focusing on the improvement of TDD skills’ set investigated in

this study could benefit software developers in improving their baseline productivity and the external quality

of the code they produce. However, replications are needed to overcome the issues related with the statistical

power of this study. We suggest practical insights for future work to investigate the phenomenon further.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Test-driven development (TDD) is a software development tech-

nique in which the development is guided by writing unit tests. It

was popularized in the late 1990s as part of Extreme Programming

[1]. A developer using TDD follows four steps:

1. Write a unit test for the functionality she wants to add.

2. Run the unit test to make sure it fails.

3. Write only enough production code to make the test to pass.

4. Refactor both production and test code, and re-run the tests.

TDD is claimed to yield better results than traditional approaches

to software development (e.g., when unit tests are written after

∗ Corresponding author. Tel.: +358445013562.

E-mail address: davide.fucci@oulu.fi (D. Fucci).

the intended functionality is considered completed by the develop-

ment team) in terms of developers’ productivity, external quality

(e.g., reduced number of defects), maintainability, and extensibility

[2,3]. However, empirical investigations of the effects of TDD are

contrasting [4,5], arguing that the results are influenced by several

variables (e.g., academic vs. industrial settings), including the skills of

developers.

Literature reviews on TDD conclude that the application of the

technique—and subsequently the manifestation of its postulated

benefits—requires some skills [5,6]; however, these studies do not

indicate what these skills are. We started our investigation on

skills with students in a previous study [7]. In that context, we

looked at their pre-existing knowledge regarding two practical skills:

proficiency with programming language and unit testing (UT). When

the subjects tackled a small programming task using TDD, we found

that such skills had little impact on their productivity—defined as the

http://dx.doi.org/10.1016/j.infsof.2015.08.004

0950-5849/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2015.08.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.08.004&domain=pdf
mailto:davide.fucci@oulu.fi
http://dx.doi.org/10.1016/j.infsof.2015.08.004


D. Fucci et al. / Information and Software Technology 68 (2015) 82–97 83

output (e.g., parts of the task completed) per unit of effort (e.g., time

to complete the task). No significant relationship was observed re-

garding the quality of the software they produced—e.g., the defects

found in the parts of the task which were completed by the subjects.

In the same study, we acknowledged that other skills must be present

in order for TDD developers to achieve the benefits advocated by TDD

supporters.

With these motivations based on existing literature and our previ-

ous work, we incorporate in this study another practical skill, which

we call TDD process conformance, along with programming language

and unit test skills. TDD process conformance represents the ability

of a developer to follow the TDD cycle. Together, these three skills

represent our TDD skill set. Further, we used a more realistic task to

overcome the limitations of small programming tasks, and recruited

professional developers for the study. Consequently, the research goal

of this work is the following:

Understanding the effect of the developers’ TDD skills on ex-

ternal quality and productivity

In our previous studies [7–9] we have investigated the role

that each skill plays individually with student subjects working

on toy tasks. We now focus on the impact the skills have, when

taken together, on the outcomes of interest, by performing a quasi-

experiment involving 43 professional software developers (30 after

mortality) without prior working experience in TDD. The developers

were trained during a week-long workshop and then asked to imple-

ment new features of a legacy system using TDD. Finally, we evalu-

ated the composite effect of their skills on their performance in terms

of external quality and productivity. Hence, we contribute to the ex-

isting knowledge by:

• Empirically investigating an anecdotal claim: that is, TDD requires

skills to manifest benefits, with professional developers.

• Building a model for quality and productivity that takes into ac-

count a set of practical skills (Section 3)

• Providing initial empirical evidence that further investigation of

the proposed TDD skill set are worth pursuing (Section 5)

The strong points of our study lie in the settings (Section 4) in

which it was conducted. In particular, we:

• Analyze data collected from professional software developers.

• Utilize a near real-world, brown-field task, rather than a toy,

green-field, task (see Section 4.2 and Appendix B).

• Quantify process conformance analytically, rather than relying on

self reports.

The rest of the paper is organized as follows. In Section 2 we

present the existing literature related to our research, in Section 3 we

define the TDD skill set used in our study. Section 4 explains the de-

tails of our empirical study design. Sections 5 and 6 report the results

and associated discussions. We address the threats to the validity of

our study in Section 7. We conclude the paper in Section 8.

2. Related work

Test-driven development has been the subject of several sec-

ondary studies. The systematic literature review by Turhan et al.

[5]—covering 32 empirical studies—found positive effects on exter-

nal quality, whereas the productivity results were inconclusive, when

TDD was used across different settings. The meta-analysis by Rafique

and Misic [4] is of interest when looking at how experience works

with the postulated TDD effects. The work covers 10 years of TDD

publications, from 2000 to 2011, in 25 selected primary studies. The

authors focused part of their analysis on comparing studies whose

subjects had different kinds of experience, i.e., academic vs. indus-

trial. The results show improvement for professionals in terms of ex-

ternal quality, but a deterioration of productivity compared to stu-

dent subjects.

In a recent systematic literature review, Munir et al. [10] classi-

fied the primary studies according to relevance and rigor. In partic-

ular, relevant studies, i.e., studies dealing with realistic settings that

have applicability in an industrial context, show that TDD benefits

professional developers in terms of external quality at the expense of

productivity. Nevertheless, the authors suggest that there is a lack of

industry experiments dealing with real-world systems and long-term

studies.

Based on the big picture provided by the systematic literature re-

views, it appears that the goal of TDD research (including the sec-

ondary studies) is to gather evidence about TDD beneficial effects

over a traditional approach to software development, like test-last

development. We acknowledge the importance of such research ef-

fort, but we also note that the majority of the empirical work pays

insufficient attention to whether the subjects possess the necessary

skills, and apply such skills in a test-driven fashion. Moreover, prior

research defines experience in terms of subject roles, e.g., students vs.

professionals.

Latorre [11] studied the effects of the application of TDD by a pool

of professional software developers (i.e., having skills with Java pro-

gramming, and UT in JUnit but not TDD) to a real-world, although

simple, software system, over a one-month period. The author shows

that the developers were able to apply TDD correctly after a short

practice and retain such knowledge later in their daily work. When

the subjects were considered according to their seniority (i.e., junior,

intermediate, and senior), the results show that the ability to readily

apply TDD initially depends on experience. In fact, senior developers

were able to achieve a high level of conformance to the process af-

ter few iterations, while intermediate and juniors needed more time,

after which, all the subjects reached a plateau level between 80%

and 90%. On the other hand, experience had an impact on produc-

tivity. Only the most expert subjects were able to keep the produc-

tivity at the level of a traditional development approach (the initial

part of the system was developed without employing TDD), while

the less experienced ones lagged behind due to the problems they

encountered with refactoring and design decisions. Nonetheless, all

the subjects delivered a correct and functioning version of the sys-

tem. Therefore—although not explicitly mentioned by the author—

external quality does not seem to be affected by the subjects’ expe-

rience or level of conformance. The author advises that similar stud-

ies should be repeated by taking into account different levels of ex-

perience with the programming language, UT, and tools, as well as

real-world application, since such factors might affect the adoption of

TDD.

Another study inspecting the role of experience and process con-

formance in TDD settings is the controlled experiment by Müller and

Höfer [12], in which experienced and novice developers were com-

pared. The experts in this case also had previous knowledge of Java

(average 6.4 years), JUnit (average 4.3 years), and TDD (average 3.4

years); whereas, the novices were Master’s students participating in

an Extreme Programming course. The results show that experts are

able to achieve better productivity (time to complete the task) but

not quality (passing acceptance tests) for which a non-significant dif-

ference was found. Nevertheless, the authors conjecture that the ob-

served difference might be due to the novice subjects’ general lack of

programming experience. Process conformance was measured, but

as a separate factor from the developers’ experience. The authors re-

port that the experienced subjects adhered more to the process than

novices, by a significant amount.



Download English Version:

https://daneshyari.com/en/article/550516

Download Persian Version:

https://daneshyari.com/article/550516

Daneshyari.com

https://daneshyari.com/en/article/550516
https://daneshyari.com/article/550516
https://daneshyari.com

