
Comparing development approaches and reuse strategies: An empirical
evaluation of developer views from the aerospace industry

Julia Varnell-Sarjeant a,⇑, Anneliese Amschler Andrews a, Joe Lucente a, Andreas Stefik b

a Department of Computer Science, University of Denver, Denver, CO 80208, United States
b Department of Computer Science, University of Nevada, Las Vegas, Las Vegas, NV 89154-4019, United States

a r t i c l e i n f o

Article history:
Received 16 June 2014
Received in revised form 10 November 2014
Accepted 2 January 2015
Available online 28 January 2015

Keywords:
Empirical study
Software reuse
Embedded systems
Nonembedded systems

a b s t r a c t

Context: There is a debate in the aerospace industry whether lessons from reuse successes and failures in
nonembedded software can be applied to embedded software. Reuse supposedly reduces development
time and errors. The aerospace industry was an early advocate of reuse, but in Aerospace, not all reuse
experiences have been as successful as expected. Some major projects experienced large overruns in
time, budget, as well as inferior performance, at least in part, due to the gap between reuse expectations
and reuse outcomes. This seemed to be especially the case for embedded systems.
Objective: Our goal is to discover software reuse practices in the aerospace industry. In particular, we
wish to learn whether practitioners who develop embedded systems use the same development
approaches and artifacts as software practitioners who develop nonembedded systems. We wish to learn
whether reuse influences selection of development approaches and artifacts and whether outcomes are
impacted.
Method: We developed a survey given to software practitioners in a major Aerospace Corporation devel-
oping either embedded or nonembedded systems. The survey probed to identify development methods
used, artifacts reused and outcomes resulting from the reuse. We used qualitative and quantitative meth-
ods such as descriptive statistics, MANOVA, Principle Component Analysis and an analysis of freeform
comments to compare reuse practices between embedded systems and nonembedded systems develop-
ment.
Results: We found that embedded systems were more likely to include component based development,
product line development and model based development in their development approach, whereas non-
embedded systems were more likely to include Ad Hoc and COTS/GOTS in their development approach.
Embedded systems developers tended to reuse more and different reuse artifacts.
Conclusion: We found that, while outcomes were nearly identical, the development approaches and arti-
facts used did, in fact, differ. In particular, the tight coupling between code and the platform in embedded
systems often dictated the development approach and reuse artifacts and identified some of the reasons.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Reuse is claimed to reduce effort, cost and to increase quality
[2], improve maintainability, reduce risk, shorten life cycle time,
lower training costs, and achieve better software interoperability
[51]. The US aerospace industry was an early advocate of reuse.
Chapter 8 of [2] covers reuse in aerospace, discussing potential sav-
ings in quality, cost and productivity. The US Government has
invested heavily in reuse, e.g. the Control Channel Toolkit (CCT)

in 1997 and Global Broadcasting Service (GBS) beginning in
1998. Hence, one would expect large scale planned reuse. Many
US government requests for proposal contain a reuse requirement
including quantifying expected savings from reuse. Yet root cause
analyses of Nunn-McCurdy cost breaches often cite reuse as a fac-
tor [63,7]. Further, there are those who question whether success-
ful reuse strategies work equally well for all types of systems.
Those supporting reuse cited the existence of working, already
developed assets that were performing similar capabilities. Those
supporting new development made the claim that when you ask
a product to do what it was not designed to do, the costs of mod-
ification and maintenance exceeds the savings of reuse. Further,
some claim that embedded systems are fundamentally different

http://dx.doi.org/10.1016/j.infsof.2015.01.002
0950-5849/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: jfvarnellsarj@me.com (J. Varnell-Sarjeant), andreas.stefik@

unlv.edu (A. Amschler Andrews), joelucente@du.edu (J. Lucente), andrews@cs.du.
edu (A. Stefik).

Information and Software Technology 61 (2015) 71–92

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.01.002&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2015.01.002
mailto:jfvarnellsarj@me.com
mailto:andreas.stefik@ unlv.edu
mailto:andreas.stefik@ unlv.edu
mailto:joelucente@du.edu
mailto:andrews@cs.du.edu
mailto:andrews@cs.du.edu
http://dx.doi.org/10.1016/j.infsof.2015.01.002
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


from nonembedded systems, and hence, successful reuse needs
different strategies. Reasons include:

� When embedded systems are written and optimized directly to
the target processors, and the reused products are to be run on a
different platform, much of the code will have to be modified to
accommodate the standard of the different platform.
� Throughput, processing, and timing of embedded systems are

critical to system performance, and thus to mission success.
� Much software available for reuse is old, sometimes obsolete. It

may have been written to processors that are no longer sup-
ported by the vendors. In order to make that software work, it
has to be reoptimized to newer processors.
� Platforms running the software are changing faster than the

software.
� When embedded are systems developed for the Department of

Defense, they are not allowed to deploy with code that is not
needed [14, p. 25]. This complicates reuse, as many reuse assets
include more general solutions.

Others think that software is software, and the same reuse
strategies can be used on either type of system. It is, hence, unclear
whether reuse is different for embedded versus nonembedded
systems.

The aerospace industry develops software for both embedded
and nonembedded systems. Is reuse really successful currently,
particularly in the aerospace domain which deals with embedded
and real time systems? Specifically, does reuse effectiveness vary
between embedded and nonembedded software? Do embedded
systems projects employ the same development and reuse strate-
gies? Are they reusing the same types of software and hardware
artifacts? To shed light on these questions, a survey was designed
to collect information on reuse success and challenges for embed-
ded vs nonembedded systems, and to compare reuse outcomes for
different development strategies and their related reuse artifacts.

The paper is organized as follows: Section 2 defines concepts
such as development approaches and artifacts and what we mean
by embedded and nonembedded systems. Section 3 summarizes
related work. Section 4 describes the design of the study. Section 5
presents the results in the form of descriptive statistics, hypothesis
testing, Principle Components Analysis and qualitative analysis.
Section 6 presents a discussion of the results. Section 7 discusses
threats to validity. Section 8 presents our conclusions.

2. System types, development approaches, and artifacts

Mohagheghi et al. define software reuse as ‘‘the systematic use
of existing software assets to construct new or modified ones or
products. Software assets in this view may be source code or exec-
utables, design templates, free standing Commercial-Off-The-Shelf
(COTS) or Open Source Software (OSS) components, or entire soft-
ware architectures and their components forming a product line or
product family. Knowledge may also be reused and knowledge
reuse is partly reflected in the reuse of architectures, templates
or processes [45].’’

2.1. System types

2.1.1. Embedded software systems
The term embedded systems includes cyber-physical systems.

ISO defines embedded systems as ‘‘a program which functions as
part of a device. Often the software is burned into firmware instead
of loaded from a storage device. It is usually a freestanding imple-
mentation rather than a hosted one with an operating system
[30].’’ They are further defined as ‘‘. . .integrations of computation

with physical processes. Embedded computers and networks mon-
itor and control the physical processes, usually with feedback loops
where physical processes affect computations and vice versa [40].’’
Examples of embedded software include device drivers, avionics,
propulsion systems and robotics.

2.1.2. Non-embedded software systems
For lack of another definition, non-embedded software is

defined as software not tied to the processors or inherently inte-
grated with the physical system. Examples of non-embedded soft-
ware include web applications, desktop applications, video games,
and other networking applications.

2.2. Development approaches

This study examines several development approaches used in
industry that use existing products. Table 1 summarizes the devel-
opment approaches. In practice, project teams may use either a
single development approach or a combination. The latter can hap-
pen for a variety of reasons. A later release of a product may use a
more recent development method for additional functionality, for
example.

2.3. Artifacts

This study also examines several artifacts often reused for
developing a system. Table 2 describes the artifacts and their def-
initions for purposes of this paper. Note that because these are
bespoke systems, sales materials, often reused in commercial
applications, are not reused. Also note that because reuse of docu-
mentation was not reported, it was not included in this analysis.

3. Related work

We performed an extensive survey of literature dating back to
1992 [3] to determine what research existed comparing reuse in
embedded systems to nonembedded systems, and to see whether
development approach as related to reuse had been addressed.
The survey of literature included quasi-experiments (there were
no experiments), case studies, surveys, reviews of industry prac-
tice, metaanalyses, experience reports, and expert opinions. After
an initial filtering process, we found 84 empirical studies focusing
on software reuse.

The papers were classified by study type, system type and devel-
opment approach. Once the papers were classified, it became clear
that many reported on a particular reuse strategy or development
approach, but were not discussing the value of reuse per se, nor
were they performing a comparison against other development
approaches or between types of systems. Because these did not
add to the analysis, a threshold was established requiring that at
least 20% of the paper be devoted to a discussion of the merits of
reuse itself or comparison with other development approaches.
While [67] find that only papers that devote at least 30% of their
content to empirical results contain adequate experimentation,
we determined that setting the threshold this high would exclude
important data. This criterion resulted in the removal of sixteen
papers since they discussed (similar to [26]) empirical results only
peripherally. The removed papers, [24,29,38,53,68,32,39,75,13,35,
74,27,69,6,23,28] were from the experience report and expert
opinion categories. We also excluded textbooks (e.g. [36]), since
their major purpose is to teach a methodology rather than to
evaluate reuse success.

Finally, in 24 papers we could not determine whether the sys-
tems were embedded or nonembedded. This was disappointing,
because highly regarded papers about reuse did not identify the

72 J. Varnell-Sarjeant et al. / Information and Software Technology 61 (2015) 71–92



Download English Version:

https://daneshyari.com/en/article/550531

Download Persian Version:

https://daneshyari.com/article/550531

Daneshyari.com

https://daneshyari.com/en/article/550531
https://daneshyari.com/article/550531
https://daneshyari.com

