Information and Software Technology 61 (2015) 93-106

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

CrossMark

ELBlocker: Predicting blocking bugs with ensemble imbalance learning @
Xin Xia?, David Lo, Emad Shihab ¢, Xinyu Wang **, Xiaohu Yang?

2 College of Computer Science and Technology, Zhejiang University, Hangzhou, China
b School of Information Systems, Singapore Management University, Singapore
€ Department of Computer Science and Software Engineering, Concordia University, Montreal, QC, Canada

ARTICLE INFO ABSTRACT

Article history:

Received 18 July 2014

Received in revised form 28 December 2014
Accepted 28 December 2014

Available online 14 January 2015

Context: Blocking bugs are bugs that prevent other bugs from being fixed. Previous studies show that
blocking bugs take approximately two to three times longer to be fixed compared to non-blocking bugs.
Objective: Thus, automatically predicting blocking bugs early on so that developers are aware of them,
can help reduce the impact of or avoid blocking bugs. However, a major challenge when predicting block-
ing bugs is that only a small proportion of bugs are blocking bugs, i.e., there is an unequal distribution
between blocking and non-blocking bugs. For example, in Eclipse and OpenOffice, only 2.8% and 3.0%
bugs are blocking bugs, respectively. We refer to this as the class imbalance phenomenon.
Method: In this paper, we propose ELBlocker to identify blocking bugs given a training data. ELBlocker first
randomly divides the training data into multiple disjoint sets, and for each disjoint set, it builds a classi-
fier. Next, it combines these multiple classifiers, and automatically determines an appropriate imbalance
decision boundary to differentiate blocking bugs from non-blocking bugs. With the imbalance decision
boundary, a bug report will be classified to be a blocking bug when its likelihood score is larger than
the decision boundary, even if its likelihood score is low.
Results: To examine the benefits of ELBlocker, we perform experiments on 6 large open source projects —
namely Freedesktop, Chromium, Mozilla, Netbeans, OpenOffice, and Eclipse containing a total of 402,962
bugs. We find that ELBlocker achieves F1 and EffectivenessRatio@20% scores of up to 0.482 and 0.831,
respectively. On average across the 6 projects, ELBlocker improves the F1 and EffectivenessRatio@20%
scores over the state-of-the-art method proposed by Garcia and Shihab by 14.69% and 8.99%, respectively.
Statistical tests show that the improvements are significant and the effect sizes are large.
Conclusion: ELBlocker can help deal with the class imbalance phenomenon and improve the prediction of
blocking bugs. ELBlocker achieves a substantial and statistically significant improvement over the state-
of-the-art methods, i.e., Garcia and Shihab’s method, SMOTE, OSS, and Bagging.

© 2015 Elsevier B.V. All rights reserved.

Keywords:
Blocking bug
Ensemble learning
Imbalance learning

1. Introduction the impact of software bugs. These techniques include bug triaging

and developer recommendation [3-6], bug severity/priority

Software bugs are prevalent in all stages of the software devel-
opment and maintenance lifecycle. To manage the reporting of
software bugs, most software projects use bug tracking systems,
such as Bugzilla. Prior studies showed that the cost of bug fixing
in a software system consumed 50-80% of the development and
maintenance cost [1]. In 2002, a report from the National Institute
of Standards and Technology (NIST) found that software bugs cost
$59 billions of the US economy annually [2].

Due to the importance of software bugs, a large number of
automated techniques have been proposed to manage and reduce

* Corresponding author.
E-mail addresses: xxkidd@zju.edu.cn (X. Xia), davidlo@smu.edu.sg (D. Lo),
eshihab@cse.concordia.ca (E. Shihab), wangxinyu@zju.edu.cn (X. Wang), yangxh@
zju.edu.cn (X. Yang).

http://dx.doi.org/10.1016/j.infsof.2014.12.006
0950-5849/© 2015 Elsevier B.V. All rights reserved.

assignment [7-9], duplicate bug report detection [10,11], bug fix-
ing time prediction [12-14], and reopened bug prediction
[15,16]. In general, the above techniques extract data from bug
reports in bug tracking systems to build their prediction models.
In a typical bug fixing process, a tester or a user detects a bug,
and submits a bug report' to describe the bug in bug tracking sys-
tems. Then, the bug is assigned to a corresponding developer to
fix. Once the bug is fixed, another developer would verify the fixes,
and finally close the bug report. However, in certain cases, the whole
fixing process is stalled due to the existence of a blocking bug [17].
Blocking bugs refer to bugs that prevent other bugs from being fixed.

1 In this paper, we use the terms “bug” or “bug report” interchangeably, which
refer to an issue report stored in a bug tracking system that is marked as a bug.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.12.006&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.12.006
mailto:xxkidd@zju.edu.cn
mailto:davidlo@smu.edu.sg
mailto:eshihab@cse.concordia.ca
mailto:wangxinyu@zju.edu.cn
mailto:yangxh@ zju.edu.cn
mailto:yangxh@ zju.edu.cn
http://dx.doi.org/10.1016/j.infsof.2014.12.006
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

94 X. Xia et al./Information and Software Technology 61 (2015) 93-106

This means that developers cannot fix their bugs, not because they
do not have the ability or resources required to do so, but because
the modules they need to fix depend on other modules which still
have unresolved (blocking) bugs.

Garcia and Shihab study blocking bugs and find that blocking
bugs need 15-40 more days to be fixed compared with non-block-
ing bugs, i.e., the time to fix blocking bugs is approximately two to
three times longer than these of non-blocking bugs [17]. Thus, an
automated tool which predicts blocking bugs can help reduce the
impact of blocking bugs. Garcia and Shihab further leverage
machine learning techniques to predict blocking bugs. They pre-
process the training bug reports by using re-sampling strategy
[18], and build various classifiers based using the pre-processed
bug reports by leveraging various machine learning techniques
(e.g., decision trees (C4.5) [19], Naive Bayes [20], kNN [20], and
Random Forests [21]). They find random forest achieves the best
performance compared to the other techniques. However, the
overall performance of all the classifiers were not optimal.

A major challenge in blocking bug prediction is the fact that
only a small proportion of bug reports are actually blocking bugs.
There is an unequal distribution between blocking and non-block-
ing bug reports. Only 8.9%, 2.3%, 12.5%, 3.2%, 3.0%, and 2.8% of the
bug reports in the whole bug report repository of Freedesktop,
Chromium, Mozilla, Netbeans, OpenOffice, and Eclipse projects
respectively are blocking bugs. We refer to this as the class imbal-
ance phenomenon [22]. Due to the class imbalance phenomenon,
predicting blocking bugs with high accuracy is a difficult task.

In this paper we propose ELBlocker to predict blocking bugs.
ELBlocker combines multiple prediction models built on a subset
of training bug reports. More specifically, we first divide the train-
ing data into multiple disjoint sets, and in each disjoint set, we
build a separate classifier (i.e., a prediction model). Next, we com-
bine these multiple classifiers, and automatically determine an
appropriate imbalanced decision boundary (or threshold) to differ-
entiate blocking bugs from non-blocking bugs. Traditional machine
learning techniques will classify a bug report to be a blocking bug if
its likelihood score to be a blocking bug is higher than its likelihood
to be a non-blocking bug. With the imbalanced decision boundary,
a bug report will be classified to be a blocking bug when its likeli-
hood score is larger than the decision boundary, no matter if its
likelihood score to be blocking is low or lower than its likelihood
score to be a non-blocking bug. This imbalanced decision boundary
is needed since imbalanced data causes a classifier to favor the
majority class. Also, since imbalanced data tends to cause poor per-
formance, to boost the performance further, we combine multiple
classifiers instead of using a single one following the ensemble
learning paradigm [23] that has often been shown effective [22].

To evaluate ELBlocker, we use two metrics: F1-score [17,7,15,9]
and cost effectiveness [24-27]. Fl1-score is a summary measure
that combines both precision and recall. F1-score is a good evalu-
ation metric when there is enough resources to manually check
all the predicted blocking bugs. A higher F1-score means that a
method can detect more blocking bugs (true positives) and reduce
the time wasted checking non-blocking bugs. Cost effectiveness
evaluates prediction performance given a limited resource, e.g.,
percentage of bug reports to check. In this paper, we use Effective-
nessRatio@20% (ER@20%) as the default cost effectiveness metric.
The ER@K% score of a technique is the ratio of the number of block-
ing bugs detected by the technique to the number detected by the
perfect technique that ranks all blocking bugs first followed by non-
blocking ones, considering the first K% of the bugs appearing in the
ranking list of our proposed technique and the perfect technique.

To evaluate the effectiveness of ELBlocker, we perform experi-
ments on 6 large open source projects: Freedesktop, Chromium,
Mozilla, Netbeans, OpenOffice, and Eclipse containing a total of
402,962 bugs. On average across the 6 projects, ELBlocker achieves

F1 and ER@20% scores of 0.345 and 0.668, respectively. These
results correspond to improvements in the F1 and ER@20% scores
over the method proposed in the prior work of Garcia and Shihab
by 14.69% and 8.99%, respectively. Statistical tests show that the
improvements are significant and the effect sizes are large. We also
compare ELBlocker with other imbalanced learning algorithms (e.g.,
SMOTE [28] and one-sided selection (OSS) [29]) and an ensemble
learning algorithm (i.e., Bagging [30]), and the results show that
our ELBlocker achieves the best performance.

The main contributions of this paper are:

1. We consider the class imbalance phenomenon and propose a
novel method, named ELBlocker, to predict blocking bugs, which
utilizes the advantages of ensemble learning to combine multi-
ple prediction models and learn an appropriate decision
boundary.

2. We compare our method with Garcia and Shihab’s method,
SMOTE, 0SS, and Bagging on 6 large software projects. The
experiment results show that our method achieves substantial
and statistically significant improvements over these methods.

The remainder of the paper is organized as follows. We describe
some preliminary materials on blocking bug prediction and a moti-
vating example in Section 2. We describe the high-level architec-
ture of ELBlocker in Section 3. We elaborate on ELBlocker and
detail our approach in Section 4. We present our experiment
results in Section 5. We present the threats to validity in Section
6. We discuss related work in Section 7. We conclude and mention
future work in Section 8.

2. Preliminaries & motivation

In this section, we first introduce some preliminaries about
blocking bugs. Next, we provide the technical motivation as to
why we need an ensemble of prediction models and why we need
to consider the decision boundary.

2.1. Blocking bugs

Blocking bugs refer to bugs that prevent other bugs from being
fixed. Garcia and Shihab find that blocking bugs take approxi-
mately two to three times longer to be fixed compared to non-
blocking bugs [17]. Fig. 1 presents an example of a report of a
blocking bug of Mozilla.? This bug report specifies that “when con-
tent is appended or inserted, the existing implementation of con-
structing pseudo frames does not work correctly”.

Observations and implications. From the blocking bug in
Fig. 1, we can observe the following:

1. Blocking bugs need a long time to be fixed. For example, the bug
in Fig. 1 took a long time to be fixed. It was created on 2002-06-
03, but on 2009-03-26 it was fixed; it took nearly 7 years to fix
this bug.

2. Blocking bugs also prevent a number of other bugs from being
fixed, and the bugs which depend on the blocking bugs also
need a long time to be fixed. The bug in Fig. 1 blocked a number
of others bugs in Mozilla, such as bugs 30378, 208305, and
294065, which also delayed the fixing of these bugs. For exam-
ple, bug 208305 was created on 2003-06-04, but only until
2009-03-26 this bug was finally fixed.

2 https://bugzilla.mozilla.org/show_bug.cgi?id=148810.

http://https://bugzilla.mozilla.org/show_bug.cgi?id=148810

Download English Version:

https://daneshyari.com/en/article/550532

Download Persian Version:

https://daneshyari.com/article/550532

Daneshyari.com

https://daneshyari.com/en/article/550532
https://daneshyari.com/article/550532
https://daneshyari.com

