
Real-Time Reflexion Modelling in architecture reconciliation: A multi
case study

Jim Buckley a, Nour Ali b, Michael English a,⇑, Jacek Rosik a, Sebastian Herold a

a The Irish Software Engineering Research Centre (Lero), University of Limerick, Ireland
b School of Computing, Engineering and Mathematics, University of Brighton, UK

a r t i c l e i n f o

Article history:
Received 2 October 2014
Received in revised form 24 January 2015
Accepted 24 January 2015
Available online 2 February 2015

Keywords:
Reflexion Modelling
Software architecture
Architecture consistency
Architecture conformance

a b s t r a c t

Context: Reflexion Modelling is considered one of the more successful approaches to architecture recon-
ciliation. Empirical studies strongly suggest that professional developers involved in real-life industrial
projects find the information provided by variants of this approach useful and insightful, but the degree
to which it resolves architecture conformance issues is still unclear.
Objective: This paper aims to assess the level of architecture conformance achieved by professional archi-
tects using Reflexion Modelling, and to determine how the approach could be extended to improve its
suitability for this task.
Method: An in vivo, multi-case-study protocol was adopted across five software systems, from four dif-
ferent financial services organizations. Think-aloud, video-tape and interview data from professional
architects involved in Reflexion Modelling sessions were analysed qualitatively.
Results: This study showed that (at least) four months after the Reflexion Modelling sessions less than
50% of the architectural violations identified were removed. The majority of participants who did remove
violations favoured changes to the architectural model rather than to the code. Participants seemed to
work off two specific architectural templates, and interactively explored their architectural model to
focus in on the causes of violations, and to assess the ramifications of potential code changes. They
expressed a desire for dependency analysis beyond static-source-code analysis and scalable visualiza-
tions.
Conclusion: The findings support several interesting usage-in-practice traits, previously hinted at in the
literature. These include (1) the iterative analysis of systems through Reflexion models, as a precursor
to possible code change or as a focusing mechanism to identify the location of architecture conformance
issues, (2) the extension of the approach with respect to dependency analysis of software systems and
architectural modelling templates, (3) improved visualization support and (4) the insight that identifica-
tion of architectural violations in itself does not lead to their removal in the majority of instances.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Software architecture aims to ensure prioritized non-functional
requirements like maintainability and modularity are satisfied
through appropriate macro-structuring of software systems [1].
However, often systems grow without an explicitly defined archi-
tecture, or have drifted over time from their originally designed
architecture [2,3]. In such cases, it is unlikely that the desired
non-functional requirements have been delivered.

Early work towards addressing this issue focussed on architec-
ture recovery: deriving the software’s architecture from the source
code of the existing system, typically from the source code

dependencies of these systems [4,5]. However, even though
software architects were often allowed to confirm or refute the
suggestions of such analyses, they did not drive the process, thus
limiting their ability to impose their desired architecture on the
system [6]. In addition, these approaches often suffered from the
‘garbage-in, garbage-out’ phenomenon [7], whereby any
architecture derived from analysis of a system without an initial
architecture (defined or adhered to) is likely to be flawed.

More recently approaches to retro-fit the intended architecture
(as originally or retrospectively defined) onto systems, have been
developed to address these issues. This work is referred to in the
literature as architecture reconciliation [7] architecture confor-
mance [3] or compliance checking [9]. Several techniques have
been proposed in this area, ranging from allowing architects probe

http://dx.doi.org/10.1016/j.infsof.2015.01.011
0950-5849/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.

Information and Software Technology 61 (2015) 107–123

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.01.011&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2015.01.011
http://dx.doi.org/10.1016/j.infsof.2015.01.011
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


the architecture of specific points in the system [10,11] by defining
textual rules, to more system-encompassing specifications like
Reflexion Modelling (RM). In Reflexion Modelling [12], for exam-
ple, the architect is initially prompted to explicitly state their ideal
(as-intended) architecture for the system, as a simple vertices-and-
edges diagram in which vertices represent architectural modules
and edges represent the expected/allowed dependencies between
these modules. The architect is then asked to map elements of
the source code to the vertices in this as-intended architecture.

The approach parses the system to identify dependencies
between the source code elements mapped to different vertices
in the as-intended architecture, thus allowing corroboration or
contradiction of the relationships proposed by the architect with
respect to the as-implemented system. It is anticipated that the
architect would then update the system to more fully align it with
the as-intended architecture. Such an approach allows the archi-
tect drive the process from their architectural perspective, and
focuses them on the parts of the system where specific architec-
tural violations arise in the implemented system with respect to
this perspective [13,14].

Several implementations of RM variants have been empirically
evaluated through case studies [15–18], largely achieving positive
feedback from industrial practitioners. Specifically, software archi-
tects have shown great enthusiasm for the information which it
provides [13,19] and have even proactively sought such analysis
again [20]. However, most of these studies focus on the ability of
RM to identify inconsistencies [21,22] but do not concentrate on
how the capabilities and insights provided by RM approaches are
utilized by software practitioners and if the violations are subse-
quently removed.

This research assesses how the capabilities and insights pro-
vided by Real-Time Reflexion Modelling (RT-RM) approaches are uti-
lized by practitioners. Here RT-RM [18] refers to a variant of RM
where new architectural violations are presented to the architect,
as new mappings are made between architectural modules and
source code elements.

The research assesses how RT-RM is leveraged, determines if
RT-RM results in the removal of architectural violations and also
identifies the ways in which the participants would like to see
RT-RM adapted/evolved in the future. It addresses these questions
through a usage-analysis of a Just-In-Time Tool for Architecture
Consistency (JITTAC) [34], which embodies a RT-RM approach.
The empirical analysis is performed over five in vivo case studies
in four different commercial organizations.

This paper is a substantial extension of the work presented by
several of the authors in [18]. That paper reported on the first three
case studies, providing a characterization of the modelling prac-
tices of the participants involved, their mapping (source code to
RM vertices) preferences, and a characterization of the violations
identified. In comparison this paper:

� Incorporates a larger data set, including two more case-studies,
and retrospective interviews with the participants from all five
case studies. This provided us with a larger, more representative
data-set on which to base our findings and with the ability to
explicitly assess the outcome of the RT-RM intervention
longitudinally.
� Provides an expanded analysis of the data-set, resulting in sev-

eral new findings. Specifically, while it does re-assess the mod-
elling, mapping and architectural violations issues expounded
upon in [18], with respect to the enlarged data set, it also
includes findings on iterative analysis of systems through
Reflexion models, findings on the outcome of RM in terms of
the systems’ architectural violations and an extended set of
requirements for RM going forward.

� Presents an extended review of the related literature in this area
(Section 2) which discusses the alternative approaches adopted
and empirical work carried out in this and closely related areas.

The paper is structured as follows. Section 2 discusses the
current state of the art with respect to various architecture confor-
mance approaches. Section 3 focuses on one particularly successful
approach: RM, discussing the approach, its empirical evaluations to
date and how RT-RM builds on the approach. Section 4 describes
the five case studies that make up the empirical component of this
paper. Sections 5 and 6 present and discuss the findings across
these case studies, with Section 7 examining the threats to validity.
Finally, Section 8 concludes the paper.

2. State of the art

When a software system’s implementation diverges from its
designed architecture, it is referred to as architectural drift or archi-
tectural erosion [8,2]. This usually happens during software evolu-
tion, when the software undergoes changes as a result of bug
fixes and updates, but may also happen during initial implementa-
tion of the system [23]. Architectural drift may result in the goals
associated with the system’s as-intended architecture being lost
[20,21], often with serious consequences [3,24,25].

Architecture conformance aims to address architectural drift. It
has been defined as a process of ensuring continued conformance
of a subject system’s implementation to its architectural design
documentation and goals [26]. Here, design documentation is
defined as any artefact created during the system’s design (some-
times, even after the code is written) that documents the system’s
architecture. There have been many approaches suggested to
increase architectural conformance, and these can be classified
into several schools [8]. This section, reviews several of these
approaches.

Tvedt Tesoriero et al. [16] divide architectural evaluation work
into two main areas: pre-implementation architecture evaluation
and implementation-oriented architecture conformance. In their
classification, pre-implementation architectural evaluation
involves the analysis of a proposed architecture to check whether
it will fulfil the optimum number of the system’s desired require-
ments. These approaches are used by architects during initial
design and provisioning stages, before the actual implementation
starts.

In contrast implementation-oriented architecture conformance
approaches assess whether the implemented architecture of the
system matches the intended architecture of the system
[16,22,26]. Specifically, whereas architectural evaluation assesses
the quality of the proposed architectural design, architectural con-
formance assesses whether the implemented architecture is consis-
tent with the proposed architecture’s specification, the goals of the
proposed architecture, or both. Implementation-oriented confor-
mance approaches can be split into two categories [27]:

� Conformance by construction: These approaches strive to achieve
conformance through automated or semi-automated genera-
tion of artefacts, composing the system from the architectural
descriptions. Several, established approaches implementing
conformance by construction exist already. For example,
approaches such as: generative programming [28], round-trip
engineering [29], and model driven development [30,31] are
being used in commercial software development. However, it
is more difficult to apply these approaches retrospectively on
existing systems: while model transformations have the ability
to map from the implementation back to architectural models,
these transformations are predefined and usually reflect well

108 J. Buckley et al. / Information and Software Technology 61 (2015) 107–123



Download English Version:

https://daneshyari.com/en/article/550533

Download Persian Version:

https://daneshyari.com/article/550533

Daneshyari.com

https://daneshyari.com/en/article/550533
https://daneshyari.com/article/550533
https://daneshyari.com

