
Automated measurement of API usability: The API Concepts Framework

Thomas Scheller ⇑, Eva Kühn
Institute of Computer Languages, Vienna University of Technology, Argentinierstr. 8, 1040 Wien, Austria

a r t i c l e i n f o

Article history:
Received 29 May 2014
Received in revised form 17 January 2015
Accepted 19 January 2015
Available online 2 February 2015

Keywords:
API usability
API design
Complexity measures
Metrics

a b s t r a c t

Context: Usability is an important software quality attribute for APIs. Unfortunately, measuring it is not
an easy task since many things like experienced evaluators, suitable test users, and a functional product
are needed. This makes existing usability measurement methods difficult to use, especially for non-
professionals.
Objective: To make API usability measurement easier, an automated and objective measurement method
would be needed. This article proposes such a method. Since it would be impossible to find and integrate
all possible factors that influence API usability in one step, the main goal is to prove the feasibility of the
introduced approach, and to define an extensible framework so that additional factors can easily be
defined and added later.
Method: A literature review is conducted to find potential factors influencing API usability. From these
factors, a selected few are investigated more closely with usability studies. The statistically evaluated
results from these studies are used to define specific elements of the introduced framework. Further,
the influence of the user as a critical factor for the framework’s feasibility is evaluated.
Results: The API Concepts Framework is defined, with an extensible structure based on concepts that rep-
resent the user’s actions, measurable properties that define what influences the usability of these concepts,
and learning effects that represent the influence of the user’s experience. A comparison of values calcu-
lated by the framework with user studies shows promising results.
Conclusion: It is concluded that the introduced approach is feasible and provides useful results for eval-
uating API usability. The extensible framework easily allows to add new concepts and measurable prop-
erties in the future.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Usability has been recognized as an important software quality
attribute not only for graphical user interfaces, but also for applica-
tion programming interfaces (APIs). With an ever growing number
of external APIs (e.g. for logging, database access or remote com-
munication), it becomes more and more important that these APIs
are designed with usability in mind. Therefore, ways are needed to
measure usability efficiently and effectively.

There are many well known usability measurement methods,
like Heuristic Evaluation [1], Thinking Aloud [2] or Surveys [2,3].
But most of them are difficult to use: They require experienced
evaluators, and the results also strongly depend on their opinions,
which can lead to wide differences depending on the evaluator [4].
Many methods require a fully functional product, which is not yet
available in earlier design stages where feedback on the user inter-

face design would be needed most. For many tests also a represen-
tative set of users is needed, as well as a test lab with equipment
for running the tests and recording results. Further, although such
methods can generally be applied to every kind of ‘‘software prod-
uct’’, their applicability for the special area of APIs has not been
sufficiently researched. And exception to this is the cognitive
dimensions framework [5,6], which is an inspection method that
defines 12 different dimensions especially for rating the usability
of APIs. While the method may be very useful, it is not easy to
use, as the dimensions and their interdependencies are difficult
to understand and rate [7]. All this makes tests very cost- and
time-expensive, and difficult to integrate into a software engineer-
ing process.

To be able to efficiently measure the usability of APIs, a mea-
surement method would be needed that is both objective and
automated. Such measurement is traditionally done by metrics. A
lot of different metrics have been introduced that evaluate the
complexity of code, like the cyclomatic complexity metric [8] or
the object-oriented software metrics by Chidamber and Kemerer
[9]. Such measures are often used by tools (e.g. NDepend [10], a

http://dx.doi.org/10.1016/j.infsof.2015.01.009
0950-5849/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +43 69911972343.
E-mail addresses: ts@complang.tuwien.ac.at (T. Scheller), eva@complang.tuwien.

ac.at (E. Kühn).

Information and Software Technology 61 (2015) 145–162

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.01.009&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2015.01.009
mailto:ts@complang.tuwien.ac.at
mailto:eva@complang.tuwien.ac.at
mailto:eva@complang.tuwien.ac.at
http://dx.doi.org/10.1016/j.infsof.2015.01.009
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


popular software measurement tool for .Net) to help developers
evaluate their own code. Unfortunately, metrics like these are
not suitable to measure usability, since they deal with the inner
structure of code, but not with the publicly exposed API. For exam-
ple, for users of the API it is irrelevant how complex the implemen-
tation of the API’s methods is, or how many non-public classes
there are.

There are two notable publications concerning metrics for
measuring API usability: [11] examines the question if a proposed
set of metrics that seem to logically relate to usability can be
used to measure any sub characteristic of usability with
statistically significant relevance, compared to the results of a
user survey. From the 30 proposed metrics, three relevant combi-
nations are found, one example being the ‘‘ratio of HTML files in
the documentation per functional entity’’ combined with the
‘‘ratio of return values per method’’. Unfortunately the resulting
metrics are rather abstract, and the authors do not discuss how
they could be used in practice to improve an API. Further, it is
surprising that, although the authors clearly state that usability
depends on the context of use, which is also described as a cen-
tral factor in all popular usability definitions (like [12]), none of
the measures respect this fact – all measures are executed on
the component/documentation as a whole. The problem of not
taking the context of use into account is, that if an API is easy
to use in most general use cases, and difficult to use in only a
few special ones, the rating given by such metrics would not be
representative for a majority of the users.

A different approach is taken in [13], where a set of 9 metrics is
introduced that are based on existing API design guidelines. The
metrics are easy to apply and relate very well to the respective
guidelines. The authors also give good examples on how to use
them in practice. The biggest drawback we see with this set of met-
rics is, that it does not give a comprehensive overview over the
usability of an API, since most of the metrics are purely for the
evaluation of methods. This may provide meaningful results for
APIs that are mostly based on method calls, but we showed in
[14] that there are a lot of other concepts which are used in APIs
(e.g. annotations). Another problem is that, like in [11], the context
of use is not taken into account. Nevertheless the metrics give valu-
able input that complements our own research.

The goal of this article is to lay the foundation for an objective
and automated usability measurement method for APIs. Such a
method would be valuable

� for API developers, to get fast initial response to the designs of
their APIs, and to avoid costly changes in late development
stages,
� for API users, to be able to objectively compare the usability of

different APIs, which is not possible with existing methods,
since they require too much effort, do not provide quantifiable
results, are not comprehensive enough and/or do not take the
context of use into account.

A particular advantage is that usability evaluation becomes pos-
sible even for people that are inexperienced in this area, or cannot
afford costly usability tests.

Of course, just like software complexity measures cannot com-
pletely replace personal code reviews, such kind of automated
usability measure can never completely replace a thorough usabil-
ity investigation with human evaluators or tests with users. It will
for example be difficult to check automatically if the class and
method names fit to the language of the problem domain. An auto-
mated measure should nevertheless be able to identify a certain
percentage of the usability problems existing within a API,
increasing the probability that the rest of the usability problems
is discovered with subsequent usability tests and inspections.

It is important to say that the goal of this article is not to define
a complete measurement method that already produces reliable
results for all kinds of APIs. This would hardly be possible, because
there are a lot factors that potentially influence API usability,
which would take a long time to evaluate with usability studies,
and there are likely also factors that have not yet been discovered.
The goal is rather to show for selected factors and APIs that the
approach is feasible, and to design an extensible API usability mea-
surement framework, into which usability-related factors are inte-
grated, and new factors can easily be added later, allowing a
gradual improvement of the framework.

In Section 2 we identify measurable characteristics of API
usability. In Section 3 we define our measurement approach, which
is based on measurable concepts and properties, and is called the
API Concepts Framework. To identify properties that potentially
influence API usability and can be measured automatically, we
conduct a literature review, which is presented in Section 4. For
a selected subset of these properties we conducted usability stud-
ies [15,14] to show whether they really influence usability and in
which way. The results of these studies are described in Section 5.
Sections 6–9 then use these results to define concrete measurable
concepts, properties and learning effects. Finally, in Section 10 an
evaluation is presented to show that the framework provides use-
ful results and allows measuring usability with high accuracy.

2. Measurable characteristics of API usability

According to [11], at least three measurable characteristics can
be identified as being related to API usability: The complexity of the
problem, the complexity of the solution and the quality of the docu-
mentation. Since a comparability between APIs is only relevant
for solutions for the same kind of problem, it can be assumed that
all of them share the same complexity of the problem, so there is no
particular need for evaluating this characteristic. Furthermore,
while documentation plays an important role for usability, espe-
cially in earlier development phases it will not be fully available
for evaluation. When a developer designs a component API, he/
she will evaluate it by writing some usage examples against this
API, but not already create its documentation. Therefore we will
here focus on the complexity of the solution built with a given API
and for a given scenario.

2.1. Measuring the complexity of the solution

We propose to further split the complexity of the solution into
the following measurable sub-characteristics:

Interface Complexity describes the complexity of the elements
of an API (including classes, methods, fields, . . .) that are used for
implementing a given scenario. The fewer elements a developer
must use, and the less complex they are, the better the usability
of the API will be. What is important is the focus on how an ele-
ment is used: For example, when a method needs to be called,
how much effort is it to (1) find the correct method, and (2) to
write down the code to correctly use the method (e.g. fill out the
method parameters). This includes basic API actions like instantiat-
ing a class or calling a method, more advanced actions like imple-
menting an interface, as well as actions that are not directly related
to a single API element, like creating an XML configuration file.

To our best knowledge, this kind of complexity cannot yet be
evaluated by any existing automated software measure.

Implementation Complexity describes the complexity of the
resulting code when implementing a given usage scenario. This is
especially important for comparing components that are not equal
in functionality. If a needed feature is not supported by a certain

146 T. Scheller, E. Kühn / Information and Software Technology 61 (2015) 145–162



Download	English	Version:

https://daneshyari.com/en/article/550535

Download	Persian	Version:

https://daneshyari.com/article/550535

Daneshyari.com

https://daneshyari.com/en/article/550535
https://daneshyari.com/article/550535
https://daneshyari.com/

