
Test Case Evaluation and Input Domain Reduction strategies
for the Evolutionary Testing of Object-Oriented software

José Carlos Bregieiro Ribeiro a,*, Mário Alberto Zenha-Rela b, Francisco Fernández de Vega c

a Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, Leiria, Portugal
b University of Coimbra, CISUC, DEI, 3030-290 Coimbra, Portugal
c University of Extremadura, C/Sta Teresa de Jornet, 38 Mérida, Spain

a r t i c l e i n f o

Article history:
Available online 5 July 2009

Keywords:
Evolutionary Testing
Search-Based Software Engineering
Test Case Evaluation
Input Domain Reduction

a b s t r a c t

In Evolutionary Testing, meta-heuristic search techniques are used for generating test data. The focus of
our research is on employing evolutionary algorithms for the structural unit-testing of Object-Oriented
programs. Relevant contributions include the introduction of novel methodologies for automation, search
guidance and Input Domain Reduction; the strategies proposed were empirically evaluated with encour-
aging results.

Test cases are evolved using the Strongly-Typed Genetic Programming technique. Test data quality
evaluation includes instrumenting the test object, executing it with the generated test cases, and tracing
the structures traversed in order to derive coverage metrics. The methodology for efficiently guiding the
search process towards achieving full structural coverage involves favouring test cases that exercise
problematic structures. Purity Analysis is employed as a systematic strategy for reducing the search
space.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Software testing is expensive, typically consuming roughly half
of the total costs involved in software development while adding
nothing to the raw functionality of the final product. Yet, it remains
the primary method through which confidence in software is
achieved [6]. A large amount of the resources spent on testing
are applied on the difficult and time consuming task of locating
quality test data; automating this process is vital to advance the
state-of-the-art in software testing. However, automation in this
area has been quite limited, mainly because the exhaustive enu-
meration of a program’s input is unfeasible for any reasonably-
sized program, and random methods are unlikely to exercise
‘‘deeper” features of software [25].

Meta-heuristic search techniques, like Evolutionary Algorithms
– high-level frameworks which utilise heuristics, inspired by
genetics and natural selection, in order to find solutions to combi-
natorial problems at a reasonable computational cost [4] – are nat-
ural candidates to address this problem, since the input space is
typically large but well defined, and test goal can usually be ex-
pressed as a fitness function [10].

The application of Evolutionary Algorithms to test data genera-
tion is often referred to as Evolutionary Testing [39] or Search-Based
Testing [25]. Approaches have been proposed that focus on the
usage of Genetic Algorithms [16,17,39,48], Ant Colony Optimiza-
tion [22], Genetic Programming [38], Strongly-Typed Genetic Pro-
gramming [43,45], and Memetic Algorithms [1].

Evolutionary Testing is an emerging methodology for automat-
ically generating high quality test data. It is, however, a difficult
subject, especially if the aim is to implement an automated solu-
tion, viable with a reasonable amount of computational effort,
which is adaptable to a wide range of test objects. Significant suc-
cess has been achieved by applying this technique to the automatic
generation of unit-test cases for procedural software [24,25]. The
application of search-based strategies for Object-Oriented unit-
testing is, however, fairly recent [39] and is yet to be investigated
comprehensively [11].

The focus of our research is precisely on developing a solution
for employing Evolutionary Algorithms for generating test sets
for the structural unit-testing of Object-Oriented programs. Our
approach involves representing and evolving test cases using the
Strongly-Typed Genetic Programming technique [28]. The method-
ology for evaluating the quality of test cases includes instrumen-
ting the program under test, and executing it using the generated
test cases as inputs with the intention of collecting trace informa-
tion with which to derive coverage metrics. The aim is that of effi-
ciently guiding the search process towards achieving full structural

0950-5849/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2009.06.009

* Corresponding author. Tel.: +351 965522037.
E-mail addresses: jose.ribeiro@estg.ipleiria.pt, jcbribeiro@gmail.com (J.C.B Ri-

beiro), mzrela@dei.uc.pt (M.A. Zenha-Rela), fcofdez@unex.es (F. Fernández de
Vega).

Information and Software Technology 51 (2009) 1534–1548

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://dx.doi.org/10.1016/j.infsof.2009.06.009
mailto:jose.ribeiro@estg.ipleiria.pt
mailto:jcbribeiro@gmail.com 
mailto:mzrela@dei.uc.pt 
mailto:fcofdez@unex.es 
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


coverage of the program under test. These concepts have been
implemented into the eCrash automated test case generation tool
– which will be described below.

Our main goals are those of defining strategies for addressing
the challenges posed by the Object-Oriented paradigm and of pro-
posing methodologies for enhancing the efficiency of search-based
testing approaches. The primary contributions of this work are the
following:

� Presenting a strategy for Test Case Evaluation and search guid-
ance, which involves allowing unfeasible test cases (i.e., those
that terminate prematurely due to a runtime exception) to be
considered at certain stages of the evolutionary search – namely,
once the feasible test cases that are being bred cease to be
interesting.

� Introducing a novel Input Domain Reduction methodology,
based on the concept of Purity Analysis, which allows the iden-
tification and removal of entries that are irrelevant to the search
problem because they do not contribute to the definition of test
scenarios.

Additionally, our methodology for automated test case genera-
tion is thoroughly described and validated through a series of
empirical studies performed on standard Java classes.

This article is organized as follows. In the next Section, we start
by introducing the concepts underlying our research. Next, related
work is reviewed and contextualized. In Section 4, our test case
generation methodology and the eCrash tool are described. The
experiments conducted in order to validate and observe the impact
of our proposals are discussed in Section 5, with special emphasis
being put on studying the novel Test Case Evaluation and Input Do-
main Reduction strategies. The concluding Section presents some
final considerations, the most relevant contributions, and topics
for future work.

2. Background and terminology

In Evolutionary Testing, meta-heuristic search techniques are
employed to select or generate test data; this section presents
the most important Software Testing and Evolutionary Algorithms
aspects related with this interdisciplinary area. Special attention is
paid to the concepts of particular interest to our technical
approach.

2.1. Software testing

Software testing is the process of exercising an application to
detect errors and to verify that it satisfies the specified require-
ments [21]. When performing unit-testing, the goal is to warrant
the robustness of the smallest units – the test objects – by testing
them in an isolated environment. Unit-testing is performed by exe-
cuting the test objects in different scenarios using relevant and
interesting test cases. A test set is said to be adequate with respect
to a given criterion if the entirety of test cases in this set satisfies
this criterion.

Distinct levels of testing include functional (black-box) and
structural (white-box) testing [6]. Traditional structural adequacy
criteria include branch, data-flow and statement coverage; the ba-
sic idea is to ensure that all the control elements in a program are
executed by a given test set, providing evidence of its quality. The
metrics for measuring the thoroughness of a test set can be ex-
tracted from the structure of the target object’s source code, or
even from compiled code (e.g., Java bytecode).

The evaluation of the quality of a given test set and the guidance
to the test case selection using structural criteria generally requires

the definition of an underlying model for program representation –
usually a Control-Flow Graph (e.g., Fig. 4). The Control-Flow Graph
is an abstract representation of a given method in a class; con-
trol-flow testing criteria can be derived based on such a program
representation to provide a theoretical and systematic mechanism
to assess the quality of the test set [29]. Two well known control-
flow testing standards to derive testing requirements from the Con-
trol-Flow Graph are the all-nodes and all-edges criteria [42].

The observations needed to assemble the metrics required for
the evaluation of test data suitability can be collected by abstract-
ing and modelling the behaviours programs exhibit during execu-
tion, either by static or dynamic analysis techniques [40]. Static
analysis involves the construction and analysis of an abstract
mathematical model of the system (e.g., symbolic execution); test-
ing is performed without executing the method being tested, but
rather this abstract model. This type of analysis is complex, and of-
ten incomplete due to the simplifications in the model. In contrast,
dynamic analysis involves executing the actual test object and mon-
itoring its behaviour; while it may not be possible to draw general
conclusions from dynamic analysis, it provides evidence of the suc-
cessful operation of the software.

Dynamic monitoring of structural entities can be achieved by
instrumenting the test object, and tracing the execution of the struc-
tural entities traversed during test case execution. Instrumentation
is performed by inserting probes in the test object.

2.1.1. Object-Oriented Software Testing
Most work in testing has been done with ‘‘procedure-oriented”

software in mind; nevertheless, traditional methods – despite their
efficiency – cannot be applied without adaptation to Object-Ori-
ented systems.

For Object-Oriented programs, classes and objects are typically
considered to be the smallest units that can be tested in isolation.
An object stores its state in fields and exposes its behaviour
through methods. Hiding internal state and requiring all interac-
tion to be performed through an object’s methods is known as data
encapsulation – a fundamental principle of Object-Oriented pro-
gramming [5].

A unit-test case for Object-Oriented software consists of a Meth-
od Call Sequence, which defines the test scenario. During test case
execution, all participating objects are created and put into partic-
ular states through a series of method calls. Each test case focuses
on the execution of one particular public method – the Method Un-
der Test. It is not possible to test the operations of a class in isola-
tion; testing a single class involves other classes, i.e., classes that
appear as parameter types in the method signatures of the Class
Under Test. The transitive set of classes which are relevant for test-
ing a particular class is called the test cluster [43].

In summary, the process of performing unit-testing on Object-
Oriented programs usually requires [44]:

� at least, an instance of the Class Under Test;
� additional objects, which are required (as parameters) for the

instantiation of the Class Under Test and for the invocation of
the Method Under Test – and for the creation of these additional
objects, more objects may be required;

� putting the participating objects into particular states, in order
for the test scenario to be processed in the desired way – and,
consequently, method calls must be issued for these objects.

2.2. Evolutionary Algorithms

Evolutionary Algorithms use simulated evolution as a search
strategy to evolve candidate solutions for a given problem, using
operators inspired by genetics and natural selection. The best

J.C.B. Ribeiro et al. / Information and Software Technology 51 (2009) 1534–1548 1535



Download English Version:

https://daneshyari.com/en/article/550542

Download Persian Version:

https://daneshyari.com/article/550542

Daneshyari.com

https://daneshyari.com/en/article/550542
https://daneshyari.com/article/550542
https://daneshyari.com

