
Is non-parametric hypothesis testing model robust for statistical
fault localization? q,qq

Zhenyu Zhang a, W.K. Chan b,*, T.H. Tse a, Peifeng Hu c, Xinming Wang d

a Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong
b Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong
c China Merchants Bank, Central, Hong Kong
d Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

a r t i c l e i n f o

Article history:
Available online 8 July 2009

Keywords:
Fault localization
Non-parametric
Hypothesis testing
Normality

a b s t r a c t

Fault localization is one of the most difficult activities in software debugging. Many existing statistical
fault-localization techniques estimate the fault positions of programs by comparing the program feature
spectra between passed runs and failed runs. Some existing approaches develop estimation formulas
based on mean values of the underlying program feature spectra and their distributions alike. Our previ-
ous work advocates the use of a non-parametric approach in estimation formulas to pinpoint fault-rele-
vant positions. It is worthy of further study to resolve the two schools of thought by examining the
fundamental, underlying properties of distributions related to fault localization. In particular, we ask:
Can the feature spectra of program elements be safely considered as normal distributions so that para-
metric techniques can be soundly and powerfully applied? In this paper, we empirically investigate this
question from the program predicate perspective. We conduct an experimental study based on the Sie-
mens suite of programs. We examine the degree of normality on the distributions of evaluation biases of
the predicates, and obtain three major results from the study. First, almost all examined distributions of
evaluation biases are either normal or far from normal, but not in between. Second, the most fault-rele-
vant predicates are less likely to exhibit normal distributions in terms of evaluation biases than other
predicates. Our results show that normality is not common as far as evaluation bias can represent. Fur-
thermore, the effectiveness of our non-parametric predicate-based fault-localization technique weakly
correlates with the distributions of evaluation biases, making the technique robust to this type of uncer-
tainty in the underlying program spectra.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Software debugging is time-consuming and is often a bottle-
neck in software development process. It involves at least two cru-
cial steps, namely fault localization and fault correction. Fault
localization identifies the causes of abnormal behaviors of a faulty
program. Fault correction modifies the faulty program or data
structure to eliminate the effect of the identified faults.

A traditional fault-localization technique consists of setting
breakpoints, re-executing the faulty program on the inputs, and

examining the corresponding program states [13]. Recently, statis-
tical fault-localization techniques [10,12,14–17] were proposed
and reported to be promising. They locate faults by analyzing the
statistics of dynamic program behaviors. A failed run is a program
execution that reveals a failure, and a passed run is a program
execution that reveals no failure. A statistical fault-localization
technique locates a fault-relevant statement (or a faulty statement
directly) by comparing the statistical information of program
elements in these two kinds of runs. Such program elements can
be statements [12] or predicates [14,15].

Because of their statistical nature, these techniques assume that
there are statistically enough passed runs and failed runs to locate
faults collectively. These techniques build underlying statistical
behavior models for the aggregated execution data of selected
program elements (which we call features), and search for program
elements that strongly correlate with the observed program fail-
ures. For instance, predicate-based statistical techniques [14–17]
locate those program predicates strongly related to faults. A
program predicate is a Boolean expression about the property of a

0950-5849/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2009.06.013

q This research is supported in part by GRF grants of the Research Grants Council
of Hong Kong (Project Nos. 123207 and 716507) and SRG grants of City University
of Hong Kong (Project Nos. 7002324 and 7002464).
qq A preliminary version of this paper was presented at the 8th International
Conference on Quality Software (QSIC 2008) [8].

* Corresponding author. Tel.: +852 2788 9684; fax: +852 2788 8614.
E-mail addresses: zyzhang@cs.hku.hk (Z. Zhang), wkchan@cs.cityu.edu.hk

(W.K. Chan), thtse@cs.hku.hk (T.H. Tse), pfhu@cs.hku.hk (P. Hu), rubin@cse.ust.hk
(X. Wang).

Information and Software Technology 51 (2009) 1573–1585

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://dx.doi.org/10.1016/j.infsof.2009.06.013
mailto:zyzhang@cs.hku.hk
mailto:wkchan@cs.cityu.edu.hk
mailto:thtse@cs.hku.hk
mailto:pfhu@cs.hku.hk
mailto:rubin@cse.ust.hk
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

system at some program location (such as a statement). CBI [14,15]
checks the probability of a predicate to be evaluated to be true in
all failed runs as well as the probability in all the runs (irrespec-
tively of whether passed or failed), and measures the increase from
the former to the latter. CBI uses this increase as a ranking score,
which indicates how much the predicate is related to a fault. SO-
BER [16,17] defines evaluation bias to model the chance that a
predicate is evaluated to be true in each run. More precisely, if P
is a predicate and pðPÞ is the probability that it is evaluated to be
true in every run, then pðPÞ is estimated to be nt

ntþnf
, where nt is

the number of times that P is evaluated to be true and nf is the
number of times that P is evaluated to be false. SOBER then evalu-
ates the difference between the distributions of pðPÞ between
passed runs and failed runs, and deems that the larger the differ-
ence, the more will P be relevant to a fault.

As indicated in their models, CBI uses means and changes in
mean values to estimate the fault relevance of a program predi-
cate; SOBER applies the central limit theorem in statistics to mea-
sure the behavioral difference of a predicate between passed runs
and failed runs. Typically, a mean value may reasonably represent
a distribution if the variable of the distribution tends to cluster
around the mean value. Is it suitable to assume any known distribu-
tion in the program behaviors such as the evaluation biases of predi-
cates? We have conducted an initial study in our previous work
[8] and found that evaluation biases may not form normal distribu-
tions. Our previous work also proposes to use a standard non-para-
metric hypothesis testing method to compare the program spectra
of passed runs and those of failed runs. We have stipulated our
model in the context of predicate-based statistical fault localiza-
tion, and picked a form of the Mann–Whitney test to determine
the degree of difference between the evaluation biases for passed
runs and those for failed runs. The degree of difference in such a
comparison is used as the ranking score, which indicates how
much a predicate is related to a fault. Based on the ranking scores
of the predicates, we reorder the predicates accordingly (predicates
having higher values in ranking score are deemed to be more sus-
picious). The empirical results [8] on the Siemens suite show that
our technique can be effective and outperforms CBI and SOBER in
locating faults.

In view of the above-mentioned initial study, in this paper, we
extend our investigation and ask a dual-sided question: Can the
feature spectra of program elements be safely considered as nor-
mal distributions so that parametric fault-localization techniques
can be soundly and powerfully applied? Alternatively, to what ex-
tent can such program spectra be regarded as normal distribu-
tions? If the answers to these questions are negative, we further
ask the following question: Can the effectiveness of non-paramet-
ric fault-localization techniques be really decoupled from the dis-
tribution shape of the program spectra?

In this paper, we collect the evaluation biases of all the predi-
cates from passed runs and those from failed runs, and conduct
normality tests on them. By using standard statistical hypothesis
testing, we successfully reject the assumption that normal distri-
bution is commonly exhibited by evaluation biases of predicates.
We further investigate the effect of such normality property for
predicates on fault-localization techniques. The empirical results
show that the effectiveness of our proposal for non-parametric
fault localization [8] weakly correlates with the presumed normal
distribution of evaluation biases.

The main contribution of the paper is fourfold: (i) It is the first
investigation on the normality nature of the execution spectra. The
empirical results show that normal distribution is not common for
the evaluation biases of predicates. In particular, the results indi-
cate that the chance of the distribution of the evaluation biases
of fault-relevant predicates being normal is less likely than that
of other predicates. (ii) Such a finding highlights a threat to the

construct validity of any empirical study which is based on the
assumption that the evaluation biases of predicates form normal
distributions. (iii) It proposes a new metric P-score to measure
the effectiveness of fault-localization techniques. (iv) It investi-
gates the effect of normality for the evaluation biases of predicates
on non-parametric fault-localization techniques. The empirical re-
sults show that the effectiveness of our non-parametric fault-local-
ization technique weakly correlates with the normality of the
underlying distribution of evaluation biases.

The remainder of the paper is organized as follows. Section 2
gives a motivating study. Section 3 revisits the background and
sets the scene for the empirical study. Research questions are out-
lined in Section 4, followed by the experiment in Section 5. A liter-
ature review is given in Section 6. Finally, Section 7 concludes the
paper.

2. Motivating study

In this section, we use one of the Siemens programs [5] to illus-
trate our important initial finding on the statistics of program
behaviors. Fig. 1 shows the code excerpted from faulty version
‘‘v1” of the program ‘‘tot_info”. In this code fragment, seven pred-
icates are included, labeled as P1 to P7. The statement ‘‘goto ret1;”
(labeled as E1) is intentionally commented out by the Siemens
researchers to simulate a statement omission fault. Locating such
a kind of fault is often difficult even if the execution of a failed test
case is traced step-by-step.

P1: if (rdf ≤ 0 cdf ≤ 0) {
info = -3.0;
goto ret3;

}
...

P2: for (i = 0; i < r; ++i) {
double sum = 0.0;

P3: for (j = 0; j < c; ++j) {
long k = x(i,j);

P4 k(fi: < 0L){
info = -2.0;

E1: /*goto ret1;*/
}
sum += (double)k;

}
N + = xi[i] = sum;

}
P5: if (N ≤ 0.0) {

info = -1.0;
goto ret1;

}
P6: for (j = 0; j < c; ++j) {

double sum = 0.0;
P7: for (i = 0; i < r; ++i)

sum += (double)x(i,j);
xj[j] = sum;

}
...
ret1:

Fig. 1. Excerpt from faulty version ‘‘v1” of program ‘‘tot_info” from the Siemens
programs.

1574 Z. Zhang et al. / Information and Software Technology 51 (2009) 1573–1585

Download English Version:

https://daneshyari.com/en/article/550546

Download Persian Version:

https://daneshyari.com/article/550546

Daneshyari.com

https://daneshyari.com/en/article/550546
https://daneshyari.com/article/550546
https://daneshyari.com

