ELSEVIER

Information and Software Technology 50 (2008) 1189-1209

Available online at www.sciencedirect.com

ScienceDirect

INFORMATION
AND
SOFTWARE
TECHNOLOGY

www.elsevier.com/locate/infsof

Locating dependence structures using search-based slicing

Tao Jiang *, Nicolas Gold, Mark Harman, Zheng Li

King’s College London, Strand, London WC2R 2LS, UK

Received 6 December 2006; received in revised form 23 October 2007; accepted 1 November 2007
Available online 17 November 2007

Abstract

This paper introduces an approach to locating dependence structures in a program by searching the space of the powerset of the set of
all possible program slices. The paper formulates this problem as a search-based software engineering problem. To evaluate the
approach, the paper introduces an instance of a search-based slicing problem concerned with locating sets of slices that decompose a
program into a set of covering slices that minimize inter-slice overlap. The paper reports the result of an empirical study of algorithm
performance and result-similarity for Hill Climbing, Genetic, Random Search and Greedy Algorithms applied to a set of 12 C programs.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Program slicing; Search-Based Software Engineering

1. Introduction

Dependence analysis has been applied to several stages
of the software engineering process, such as program
restructuring [21,53], program comprehension [26], regres-
sion testing [12] and program integration [42]. It can also
be an effective way of understanding the dependence struc-
ture of a program [13,52] and a measurement of depen-
dence-related attributes such as cohesion and coupling
[10,60]. For these applications, sets of slices are used to
reveal interesting properties of the program under analysis,
such as the presence of dependence clusters and the cohe-
sive (and less cohesive) parts of the program.

The advent of commercial, scalable and robust tools for
slicing such as Grammatech’s CodeSurfer [36] makes it
possible to construct all possible slices for large programs
in reasonable time. By constructing the set of all slices of
a program, it is possible to analyse the dependence struc-
ture of the program. This allows slicing to be used to cap-
ture the dependence of every point in the program,
allowing analysis of the whole program dependence struc-
ture. This raises an interesting research question:

* Corresponding author.
E-mail address: tao.jiang@kcl.ac.uk (T. Jiang).

0950-5849/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2007.11.001

“How can useful interesting dependence structures be
formed in amongst the mass of dependence information
available?”

In this paper, dependence is analysed using program
slicing, and so this question is reformulated as:

“Of the set of all possible slices of a program, which sub-
sets reveal interesting dependence structures?”’

Of course, for a program consisting of n program
points, there will be n possible slices and, therefore, 2"
subsets of slices. Since the number of program points
is always at least as large as the number of statements
in the program, the powerset of all possible slices will
be extremely large; too large to enumerate for any real-
istically sized program. This is merely a reflection of
the mass of dependence information available and would
need to be considered by any whole program dependence
analysis. The overwhelming quantity of information
motivates the search-based approach introduced in this
paper.

The paper introduces an approach to location of
dependence structures, founded on the principles of
Search-Based Software Engineering (SBSE) [23.,40].
Using this formulation, the problem becomes one of a
search for a set of slices that exhibit interesting


mailto:tao.jiang@kcl.ac.uk

1190 T. Jiang et al. | Information and Software Technology 50 (2008) 1189-1209

dependence structures. The choice of what constitutes an
‘interesting dependence structure’ is a parameter to the
overall approach, making it highly flexible. In search-
based software engineering, a fitness function is defined
to capture such a property of interest. In the case of
search-based slicing, it captures the properties of a
dependence structure that make it interesting to a partic-
ular analysis.

The search process is realized by an algorithm that uses
the fitness function to guide a search that seeks to find
optimal or near optimal solutions with respect to the fit-
ness function. In order to experiment with the search-
based slicing approach, the paper presents the results of
an implementation and associated empirical study into
the search for slice sets that decompose a program into
a set of slices that cover the program with minimal over-
lap. The fitness function used in the empirical study is
motivated by work on slicing as a decomposition tech-
nique [34,73].

This instantiation of the search-based slicing approach
formulates the decomposition problem as a set cover
problem [31]. However, it must be stressed that this repre-
sents merely the instantiation of a parameter to the
approach (the fitness function). The search-based slicing
approach derives a great deal of flexibility from the fact
that the fitness function (and therefore the property of
interest) is merely a parameter; in order to search for a
different kind of dependence structure, only the fitness
function needs to be changed.

The paper reports the results of experiments with four
different search algorithms for search-based slicing and
presents the results of an empirical study involving 12 C
programs. The empirical study aims to answer four related
research questions:

(1) How well does each algorithm perform?

(2) How similar are the results produced by each
algorithm?

(3) How can the results be visualized and what do they
reveal?

(4) How efficiently can the best algorithm perform with
large practical programs and for all the functions in
programs?

The paper makes the following primary contributions:

(1) An approach that identifies dependence structures is
introduced as a search problem over the powerset
of the set of all possible program slices, allowing
search-based algorithms to be used to search for
interesting dependence structures.

(2) A fitness function is introduced that seeks to optimise
the search towards solutions that decompose the pro-
gram into a set of slices that collectively cover the
whole program with minimal overlap. Four search
algorithms are implemented in order to experiment
with this fitness function.

(3) The results of an empirical study are reported, showing
that the Greedy Algorithm performs better than Ran-
dom, Hill Climbing and Genetic Algorithm approaches
to the problem. This is an attractive finding, since
Greedy Algorithms are extremely simple and efficient.

(4) A simple visualization is introduced to explore the
results and their similarity. This shows a higher
degree of similarity for the intelligent techniques over
random search. This visual impression is augmented
by computational analysis of results. The similarity
of results for intelligent search provides that the
results are consistent and meaningful.

(5) The visualization also has an interesting side effect,
which may be a useful spin off: the presence of code
clones becomes visually striking in some of the exam-
ples. However, clone detection is not the focus of this
paper.

(6) The paper also reports results on redundancy. That is
how often a slice is completely included by another
one. The results suggest that redundancy phenomena
are universal in 12 programs. However, it is shown
that this redundancy does not affect the Greedy Algo-
rithm advocated in the paper.

(7) Based upon the performance comparison with four
search algorithms, the Greedy Algorithm is further
applied to six larger programs to decompose each
function of each program. The results show that
majority of functions can be decomposed into sets
of slices efficiently.

The data used in this paper are made available to the
research community to facilitate replication at http://
www.dcs.kcl.ac.uk/pg/jiangtao/.

The rest of the paper is organised as follows: Section 2
presents the problem description in more detail, while Sec-
tion 3 introduces the search-based algorithms and their
application to the problem. Sections 4 and 5 present the
results of the empirical study. Sections 6 and 7 present
related work and conclusions.

2. Problem description

The goal is to identify dependence structures by search-
ing the space of all subsets of program slices. In this paper,
static backward slicing is used, but the approach is not con-
fined merely to static backward slicing; it can be used with
any analysis that returns a set of program points (thereby
including all forms of program slicing).

As an illustrative example, consider a program that has
only 8 program points. Table 1 gives all the slices of this
hypothetical example in terms of each program point as
slicing criteria.

The table represents the value of each slice. In this table,
a 1 represents a program point that is included in the slice,
while a 0 represents a program point that is not included in
the slice. In this situation, a good decomposition would be
the set {1,5,7}, rather than {1,2,7}, {6} or any other sub-


http://www.dcs.kcl.ac.uk/pg/jiangtao/
http://www.dcs.kcl.ac.uk/pg/jiangtao/

Download English Version:

https://daneshyari.com/en/article/550579

Download Persian Version:

https://daneshyari.com/article/550579

Daneshyari.com


https://daneshyari.com/en/article/550579
https://daneshyari.com/article/550579
https://daneshyari.com

