FISEVIER

Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

Influence of ER leak on resting cytoplasmic Ca²⁺ and receptor-mediated Ca²⁺ signalling in human macrophage

Janice A. Layhadi, Samuel J. Fountain*

School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, NR4 7TJ, UK

ARTICLE INFO

Article history: Received 12 April 2017 Accepted 19 April 2017 Available online 20 April 2017

Keywords: Endoplasmic reticulum Calcium leak Translocon Macrophage Purinergic

ABSTRACT

Mechanisms controlling endoplasmic reticulum (ER) Ca²⁺ homeostasis are important regulators of resting cytoplasmic Ca²⁺ concentration ([Ca²⁺]_{cyto}) and receptor-mediated Ca²⁺ signalling. Here we investigate channels responsible for ER Ca²⁺ leak in THP-1 macrophage and human primary macrophage. In the absence of extracellular Ca²⁺ we employ ionomycin action at the plasma membrane to stimulate ER Ca²⁺ leak. Under these conditions ionomycin elevates [Ca²⁺]_{cyto} revealing a Ca²⁺ leak response which is abolished by thapsigargin. IP₃ receptors (Xestospongin C, 2-APB), ryanodine receptors (dantrolene), and translocon (anisomycin) inhibition facilitated ER Ca²⁺ leak in model macrophage, with translocon inhibition also reducing resting [Ca²⁺]_{cyto}. In primary macrophage, translocon inhibition blocks Ca²⁺ leak but does not influence resting [Ca²⁺]_{cyto}. We identify a role for translocon-mediated ER Ca²⁺ leak in receptor-mediated Ca²⁺ signalling in both model and primary human macrophage, whereby the Ca²⁺ response to ADP (P2Y receptor agonist) is augmented following anisomycin treatment. In conclusion, we demonstrate a role of ER Ca²⁺ leak via the translocon in controlling resting cytoplasmic Ca²⁺ in model macrophage and receptor-mediated Ca²⁺ signalling in model macrophage and primary macrophage.

1. Introduction

The endoplasmic reticulum (ER) plays important roles in many cellular processes, including protein folding and cellular calcium (Ca²⁺) homeostasis [1]. During receptor-mediated intracellular Ca^{2+} signal generation, Ca^{2+} stored by the ER can be mobilised causing rapid elevation in the concentration of free cytoplasmic Ca²⁺ ([Ca²⁺]_{cyto}). Receptor-mediated processes coupled to phospholipase C (PLC) mobilise ER Ca²⁺ through the production of inositol 1,4,5-triphosphate (IP₃), which open IP₃ receptors on the ER membrane through which Ca²⁺ rapidly permeates into the cytoplasm [2]. Released Ca²⁺ can stimulate further release via activation of ER ryanodine receptors, a process termed Ca²⁺-induced Ca²⁺ release (CICR) [3]. During receptor-mediated Ca²⁺signalling, mobilisation of the ER store lowers the concentration of free Ca²⁺ within the ER lumen ($[Ca^{2+}]_{ER}$). The decrease in $[Ca^{2+}]_{ER}$ is sensed by the ER resident stromal interaction molecule (STIM), which in turn stimulates cellular Ca²⁺ entry via the activation of the ora family of plasma membrane Ca²⁺ channels [4]. This process is

termed store-operated Ca²⁺ entry (SOCE). Receptor-mediated intracellular Ca²⁺ signals are therefore often a composition of ER Ca²⁺ release and Ca²⁺ entry via SOCE. In macrophage, receptor-mediated Ca²⁺ signals are generated in response to environmental cues which are important for cellular migration [5,6].

Under resting conditions $[Ca^{2+}]_{ER}$ reflects a balance between the activity of SERCA and passive efflux of Ca^{2+} into the cytoplasm via Ca^{2+} leak channels. Hence the magnitude of ER Ca^{2+} leak can influence resting $[Ca^{2+}]_{cyto}$ and the amount of ER Ca^{2+} mobilisable in response to receptor-mediated signalling. The molecular identity of ER Ca²⁺ leak channels is poorly defined for mammalian cells [7]. Though candidates such as presenilins [8] and the ER translocon [9–11] have been proposed as leak channels in some cell types, there is currently no published description of candidate channels in leukocytes. Processes of ER Ca²⁺ leak are therefore likely to play important homeostatic roles in controlling both [Ca²⁺]_{cyto} and [Ca²⁺]_{FR} in macrophage. Understanding mechanisms of ER Ca²⁺ leak in macrophage is also of importance, as a decrease in [Ca²⁺]_{ER} is a key initiator of apoptosis in ER-stressed macrophage, and ER Ca²⁺ release is necessary for apoptotic signalling in macrophage [12,13]. ER-stressed mediated apoptosis in lesional macrophage is a central event during plaque necrosis in advanced atherosclerosis [14]. In this study we sought to identify channels that mediate ER

^{*} Corresponding author.

E-mail address: s.j.fountain@uea.ac.uk (S.J. Fountain).

Ca²⁺ leak in human macrophage and determine the influence of ER Ca²⁺ leak channel activity on receptor-mediated Ca²⁺ signalling.

2. Materials and methods

2.1. Chemicals and reagents

Ionomycin, Thapsigargin (Tg) and 2-APB were obtained from Santa-Cruz Biotechnologies. ADP, Anisomycin and Dantrolene were obtained from Sigma-Aldrich (UK). Xestospongin C was obtained from Abcam (UK).

2.2. Cells

THP-1 cells were obtained from the European Collection of Cell Cultures (ECACC). Human THP-1 cells were cultured in RPMI 1640 medium with 2 mM ι -glutamine, 10% foetal bovine serum and 50 IU/ml penicillin and 50 μ g/ml streptomycin. Cells were maintained at 37 °C with 5% CO₂. To generate THP-1 differentiated macrophages, cells were stimulated with 320 nM of phorbol 12-myristate 13-acetate for 48 h, 37 °C, 5% CO₂.

2.3. Isolation of PBMCs and generation of monocyte-derived macrophages

Peripheral venous blood was collected from healthy human volunteers through the National Health Service (NHS) Blood and Transplant. Blood was layered on top of Histopaque-1077 (Sigma-Aldrich, UK) for centrifugation at $1000\times g$ for 25 min. Buffy coat layer containing the PBMCs was removed, washed and counted using trypan blue exclusion. PBMCs were allowed to adhere onto T75 flasks for 2 h at 37 °C, washed with dPBS (Lonza, UK) and cultured in RPMI-160 with 2 mM L-glutamine, 5% heat-inactivated autologous serum and 50 IU/ml penicillin and 50 $\mu g/ml$ streptomycin, in the presence of 10 ng/ml recombinant human GM-CSF (Peprotech, UK) at 37 °C for 6 d.

2.4. Intracellular Ca²⁺ measurements

Cells were loaded for 1 h at 37 °C with 2 μ M Fura-2 AM and measurements were made at 37 °C on a 96-well plate reader (FlexStation III, Molecular Devices). Change in intracellular Ca²⁺ concentration ([Ca²⁺]_i) is indicated as ratio of fura-2 emission intensities for 340- and 380-nm excitation (F ratio). SBS buffer contained (mM): 130 NaCl, 5 KCL, 1.2 MgCl₂, 1.5 CaCl₂, 8 p-glucose, 10 HEPES pH 7.4. Ca²⁺ free SBS was prepared by excluding CaCl₂ and supplemented with 2 mM EGTA. Loading of cells with Fura-2 was performed in SBS buffer supplemented with 0.01% (w/v) pluronic acid. Pre-treatment of all compounds, except for anisomycin (1hr), were done at 30 min.

2.5. Statistical analysis

Data were analysed using OriginPro 9.0 software (Origin Lab, USA). Concentration-response curves were fitted assuming a Hill coefficient of 1. Hypothesis testing for experiments with paired datasets were performed by means of paired Student's t-test using Origin Pro 9.0. Data are expressed as mean \pm SEM of at least three independent experiments. N represents number of technical repeats for THP-1 model macrophage and number of donors for primary macrophage.

3. Results

3.1. Ionomycin elevates cytoplasmic Ca^{2+} independent of Ca^{2+} influx

In THP-1 model macrophage, application of ionomycin in the presence of extracellular Ca^{2+} elevated $[Ca^{2+}]_{cyto}$ in a concentration-dependent manner (EC₅₀ 0.365 \pm 0.01 μ M; N=4) (Fig. 1A). In the absence of extracellular Ca²⁺, ionomycin retained its ability to elevate cytoplasmic Ca²⁺ but with a reduced potency $(EC_{50} 0.61 \pm 0.11 \mu M \text{ vs control with extracellular Ca}^{2+}; P < 0.001;$ N=4) and reduced maxima (F ratio 1.341 \pm 0.036 vs 2.67 \pm 0.054 control μ M; P \leq 0.001; N = 4) (Fig. 1A). The kinetics of Ca²⁺ response generated by maximal concentrations of ionomycin differed in the presence or absence of extracellular Ca²⁺, with responses in the absence of extracellular Ca²⁺ lacking a sustained phase (Fig. 1B). Similar results were observed in primary macrophage. In primary cells, ionomycin evoked a Ca²⁺ response in the presence (EC₅₀ 0.332 \pm 0.19 μ M; N=3) and absence of extracellular Ca^{2+} (EC₅₀ 3.47 \pm 2.01 μ M vs control with extracellular Ca^{2+} ; $P \le 0.01$; N = 3) (Fig. 1C-D). Data from primary and model macrophage are consistent with the notion that ionomycin acts as a Ca²⁺-selective pore at the plasma membrane and that the sustained phase is dependent upon Ca²⁺ influx. However, the data also demonstrate that ionomycin can elevate cytoplasmic Ca²⁺ in the absence of extracellular Ca²⁺ and therefore in the absence of Ca²⁺ influx.

3.2. Ionomycin stimulates release of ER Ca^{2+} store independent of Ca^{2+} influx and dependent on passive Ca^{2+} leak

We initially investigated the requirement of the ER Ca²⁺ store in mediating ionomycin-evoked responses by depleting the store with the irreversible SERCA inhibitor thapsigargin (Tg). In these experiments, Tg reduced the ability of ionomycin to elevate cytoplasmic Ca^{2+} in the presence of extracellular Ca^{2+} (EC₅₀ 9.28 \pm 6.91 μ M νs control; $P \le 0.001$; N = 4), though ionomycin was able to elevate cytoplasmic Ca²⁺ at concentrations 1–10 μM (Fig. 1E). However, the response to ionomycin in the absence of extracellular Ca²⁺ was abolished by Tg (Fig. 1F), suggesting that ionomycin can elevate cytoplasmic Ca²⁺ independent of Ca²⁺ influx and dependent upon the ER Ca²⁺ store. To further test the contribution of the ER Ca²⁻ store for ionomycin-evoked response, we examined the effect of ionomycin pre-treatment of the magnitude of Ca²⁺ mobilisation following SERCA inhibition with thapsigargin. In the presence of extracellular Ca²⁺, pre-incubation with ionomycin significantly attenuated the magnitude of Tg-evoked elevation in cytoplasmic Ca^{2+} (88.5± 1.93%; P < 0.001; N = 4) (Fig. 1G). In the absence of extracellular Ca²⁺, ionomycin pre-treatment abolished Tg-evoked Ca²⁺ response (Fig. 1G). As the magnitude of Tg-evoked response in the absence of extracellular Ca²⁺ is directly proportional to the ER Ca²⁺ content, these data suggest ionomycin in the absence of extracellular Ca²⁺ elevates cytoplasmic Ca²⁺ by stimulating ER store mobilisation. Finally, we observed a significant elevation in basal cytoplasmic Ca²⁺ in cells pre-treated with ionomycin in the absence of extracellular Ca²⁺ (F ratio 1.57 \pm 0.039 vs 1.96 \pm 0.026 control; $P \le 0.001$; N = 4) (Fig. 1H).

3.3. ER Ca^{2+} channels mediate ionomycin-evoked cytoplasmic Ca^{2+} elevation in the absence of extracellular Ca^{2+}

Data thus far indicate a primary role for ER Ca^{2+} store release in mediating the effect of ionomycin independent of Ca^{2+} influx. On the assumption that ionomycin is acting as a plasma membrane conduit for Ca^{2+} and stimulating store leak, one would expect that

Download English Version:

https://daneshyari.com/en/article/5505855

Download Persian Version:

https://daneshyari.com/article/5505855

Daneshyari.com