
Simulating upgrades of complex systems: The case of Free and Open
Source Software

Davide Di Ruscio, Patrizio Pelliccione ⇑
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica (DISIM), Università dell’Aquila, Italy

a r t i c l e i n f o

Article history:
Received 1 March 2013
Received in revised form 10 January 2014
Accepted 12 January 2014
Available online 25 January 2014

Keywords:
Evolution of FOSS systems
Simulation
Model-driven engineering
Linux distributions

a b s t r a c t

Context: The upgrade of complex systems is intrinsically difficult and requires techniques, algorithms,
and methods which are both expressive and computationally feasible in order to be used in practice.
In the case of FOSS (Free and Open Source Software) systems, many upgrade errors cannot be discovered
by current upgrade managers and then a system upgrade can potentially lead the system to an inconsis-
tent and incoherent state.
Objective: The objective of this paper is to propose an approach to simulate the upgrade of complex sys-
tems in order to predict errors before they affect the real system.
Method: The approach promotes the use of model-driven engineering techniques to simulate the
upgrade of complex systems. The basic idea is to have a model-based description of the system to be
upgraded and to make use of model transformations to perform the upgrade on a source model so to
obtain a target model representing the state of the upgraded system.
Results: We provide an implementation of the simulator, which is tailored to FOSS systems. The architec-
ture of the simulator is distribution independent so that it can be easily instantiated to specific distribu-
tions. The simulator takes into account also pre and post-installation scripts that equip each distribution
package. This feature is extremely important since maintainer scripts are full-fledged programs that are
run with system administration rights.
Conclusions: The paper shows the kind of errors the simulator is able to predict before upgrading the real
system, and how the approach improves the state of the art of package managers while integrated in real
Linux distribution installations.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Modern software systems are moving towards an on-line mode
of operation where long downtimes due to maintenance problems
are no more acceptable. With the shift towards an on-line mode of
operation the ‘‘minimal acceptable standard’’ for the quality of
service of modern software systems has been raised to a very high
level.

Free and Open Source Software (FOSS) systems are among the
most challenging modern software systems. Even big companies
such as Google, or large public bodies, like the French Ministry of
Finance, base their information technology infrastructures on FOSS
components. FOSS systems are typically based on fine-grained
units of software deployment, called packages, which evolve in a
non-centralized and controlled way and are frequently released
[1].

The complexity of deploying a complete FOSS infrastructure
has led to the development of what are now called distributions
(e.g., Mandriva, Ubuntu, and Fedora), which are consistent and
functional sets of software components released together with
the software that is necessary to set up a complete operating sys-
tem. This software includes also automated mechanisms for man-
aging the packages distributions are made of. These automated
mechanisms, called package managers, make use of packages
metadata in order to upgrade the system, i.e., to handle package
installations, removals, and upgrades. The most important
information that is contained in packages metadata concerns the
specification of dependencies (i.e., what a package needs in order
to be correctly installed and to function correctly), and conflicts
(i.e., what should not be present on the system in order to avoid
malfunctioning). These packages are equipped with maintainer
scripts which are executed before and after upgrades to perform
configuration actions. Unfortunately, by using existent package
managers it is possible to easily make the system unstable by
installing, removing, or upgrading some packages that ‘‘break’’
the consistency and coherence of what is installed in the system
itself.

0950-5849/$ - see front matter � 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2014.01.006

⇑ Corresponding author. Tel.: +39 3284356799.
E-mail addresses: davide.diruscio@univaq.it (D. Di Ruscio), patrizio.pelliccione@

univaq.it (P. Pelliccione).

Information and Software Technology 56 (2014) 438–462

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.01.006&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.01.006
mailto:davide.diruscio@univaq.it
mailto:patrizio.pelliccione@ univaq.it
mailto:patrizio.pelliccione@ univaq.it
http://dx.doi.org/10.1016/j.infsof.2014.01.006
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


The MANCOOSI project1 investigated the problem of ensuring the
‘‘correct’’ upgrade of FOSS systems. This is a complex problem that
goes beyond the installation of single packages since it has to deal
also with the preservation of some additional properties and with
finding an ‘‘optimal-path’’ to migrate the system from the current
configuration to the targeted new one. In the context of the MANCOOSI

project, we have conceived EVOSS (EVolution of free and Open Source
Software) [2], which is a model-based approach to support the
upgrade of FOSS systems. The approach promotes the simulation
of upgrades to predict failures before affecting the real system. Both
fine-grained static aspects (e.g., configuration incoherences) and dy-
namic aspects (e.g., the execution of configuration scripts) are taken
into account, improving over the state of the art of package managers.

While a good introduction to the overall EVOSS approach and its
motivations can be found in [2], this paper describes in details the
simulator by presenting its structure, its constituting elements, its
implementation and by discussing the kind of errors the simulator
is able to predict before they affect the real system. The approach
promotes the use of model-driven engineering techniques to sim-
ulate the upgrade of complex systems. The basic idea is to have a
model-based description of the system to be upgraded and to make
use of model transformations to perform the upgrade on a source
model so to obtain a target model representing the state of the up-
graded system. The implementation of the approach is focused on
FOSS systems. The architecture of the simulator is distribution
independent so that it can be easily instantiated to specific distri-
butions (each distribution has some specificities such as shell com-
mands and conventions used to write maintainer scripts). The
simulator takes into account also pre and post-installation scripts
that equip each distribution package. This feature is extremely
important since maintainer scripts are full-fledged programs that
are run with system administration rights. The simulation of main-
tainer scripts is possible thanks to a Domain Specific Language
(DSL), which has been conceived within EVOSS to specify maintainer
scripts behavior. The DSL captures recurring templates and a lim-
ited set of control flow operations, which have been carefully iden-
tified through a deep analysis of Linux distributions. Moreover, the
DSL has also a tagging mechanism that allows us to specify the
behavior of those parts of scripts that cannot be completely speci-
fied with DSL statements. This way, script authors (usually package
maintainers) can specify how such parts affect the configuration
model and enable their simulation. DSL elements have a well-
defined transformational semantics expressed in terms of system
configuration modifications: each system configuration is given
as a model and the script behavior is represented by suitable model
transformations that take as input a system model representing
the system before performing the installation.

Real experiences show how the simulator works in practice by
highlighting its efficacy, i.e., how it improves the state of the art of
package managers while integrated in real Linux distribution
installations. The overall approach has been implemented by Caixa
Mágica2 within the distribution CM14.3 This distribution provides to
users also a selective roll-back mechanism that enables roll-backs
also of single operations. The effect of the revert operation is the sys-
tem configuration in which only the selected operations have been
roll-backed. This is completely different from currently available
roll-back systems that allow a previous configuration of a system
to be restored, but any changes between that time and the current
time, even if they affect other configuration files, are lost.

Paper structure. Section 2 introduces the case of FOSS systems
and discusses limitations of existent package managers. Section
3 presents the simulator, which is the main contribution of the

paper. Section 4 describes how the simulator has been imple-
mented by using model-driven technologies. The simulator can
be integrated with current Linux distributions and this is pre-
sented in Section 5. Section 6 mainly discusses the actual up-
grade problems EVOSS is able to deal with, and presents a
large experimentation, which has the aim of validating the sim-
ulator and of showing its applicability in practice. Section 7 com-
pares the approach with related works. Section 8 briefly presents
the history of simulation in computer science and discusses the
benefits of using model-driven technologies for realizing simula-
tors. The paper concludes in Section 9 by providing final remarks
and future research directions.

2. FOSS distributions

Widely used FOSS distributions, like Debian, Ubuntu, Fedora,
and Suse are based on the central notion of software package.
Packages are assembled to build a specific software system. The
recommended way of evolving such systems is to use package
manager tools to perform system modifications by adding, remov-
ing, or replacing packages. These operations are generically called
upgrades. Existent package managers integrate some preliminary
checks to prevent upgrade failures. Unfortunately many unpredict-
ed upgrade failures might still happen, as will be discussed in the
following.

2.1. Packages and upgrades

In FOSS distributions, a package is a software unit containing the
software component and a description of it, also known as metada-
ta. More precisely, the core of each package is a file bundle encoding
the shipped component: executable binaries, data, documentation,
etc. A distinguished subset of those files consists of configuration
files, which affect the runtime behavior of the component. During
upgrade deployment, most files play a ‘‘static’’ role, in the sense
that they are simply copied over.

Package metadata describe aspects needed for calculating an
upgrade plan according to upgrade requests. An upgrade plan is
produced by a planner (which may consider also optimization
criteria) and consists of a sequence of packages with associated
the operation to be performed (i.e., installation and removal of
a package). Common metadata contain the package identifier,
version, maintainer, and description. Most notably, metadata are
also used to declare inter-package relationships such as: dependen-
cies (the need of other packages to work properly), conflicts (the
incompatibilities with other packages), and feature provisions (an
indirection layer over dependencies) [3]. This information is taken
into account by the package manager when performing the system
upgrade.

Packages also contain a set of executable maintainer scripts,
used by package maintainers to hook custom actions into
the upgrade process. Several aspects of maintainer scripts are
noteworthy:

1. they play a dynamic role as they are executed during upgrades;
2. they are full-fledged programs, usually written in POSIX shell

languages;
3. they are executed with system administrator rights and then

they may perform arbitrary changes to the whole system;
4. they cannot be replaced by just shipping extra files: they might

need to access data which is available in the target installation
machine, but not in the package itself;

5. they are expected to complete without errors: their failures,
usually signaled by non-0 exit codes, automatically trigger
upgrade failures.

1 FP7 EU project MANCOOSI: http://www.mancoosi.org.
2 http://www.caixamagica.pt/.
3 http://linux.caixamagica.pt/pag/documentacao/CM14/ManualCxM14.pdf.

D. Di Ruscio, P. Pelliccione / Information and Software Technology 56 (2014) 438–462 439

http://www.mancoosi.org
http://www.caixamagica.pt/
http://linux.caixamagica.pt/pag/documentacao/CM14/ManualCxM14.pdf


Download English Version:

https://daneshyari.com/en/article/550604

Download Persian Version:

https://daneshyari.com/article/550604

Daneshyari.com

https://daneshyari.com/en/article/550604
https://daneshyari.com/article/550604
https://daneshyari.com

