Available online at www.sciencedirect.com

ScienceDirect

INFORMATION
AND
SOFTWARE
TECHNOLOGY

www.elsevier.com/locate/infsof

ELSEVIER Information and Software Technology 50 (2008) 449461

An approach for the maintenance of input validation

Hui Liu *, Hee Beng Kuan Tan

School of Electrical and Electronic Engineering, Block S2, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore

Received 29 November 2006; received in revised form 14 May 2007; accepted 15 May 2007
Available online 31 May 2007

Abstract

Input validation is the enforcement of constraints that an input must satisfy before it is accepted in a program. It is an essential and
important feature in a large class of systems and usually forms a major part of a data-intensive system. Currently, the design and imple-
mentation of input validation are carried out by application developers. The recovery and maintenance of input validation implemented
in a system is a challenging issue. In this paper, we introduce a variant of control flow graph, called validation flow graph as a model to
analyze input validation implemented in a program. We have also discovered some empirical properties that characterizing the imple-
mentation of input validation. Based on the model and the properties discovered, we then propose a method that recovers the input val-
idation model from source and use program slicing techniques to aid the understanding and maintenance of input validation. We have
also evaluated the proposed method through case studies. The results show that the method can be very useful and effective for both

experienced and inexperienced developers.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Software maintenance; Input validation; Empirical properties; Program slicing; Feature recovery

1. Introduction

A large class of systems process inputs submitted from
users. Information systems and database applications
belong to this class. In such systems, an important compo-
nent is to properly handle both expected and unexpected
inputs, so that only valid inputs are accepted to raise exter-
nal effects, while invalid inputs are rejected and no external
effects are raised. The enforcement in the systems is called
input validation, and we refer it in this paper as the input
validation feature. For example, in an order processing sys-
tem, the outstanding balance of a customer must not
exceed the credit limit. A database transaction is taken
place only if the new order placed by the customer does
not lead to the exceeding of the limit; hence, input valida-
tion is incorporated into the system to enforce that only a
valid new order is accepted for the transaction to occur.

* Corresponding author.
E-mail addresses: 1iuh0007@ntu.edu.sg (H. Liu). ibktan@ntu.edu.sg
(H.B.K. Tan).

0950-5849/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2007.05.004

Input validation plays a key role in the control and accu-
racy of user inputs submitted to a system. It is vital for the
robustness of the system. It is also one of the strongest
measures of defense against today’s application attacks
[23]. Design and implementation of input validation is a
challenging issue, and currently, the primary burden falls
on application developers. Furthermore, many systems
that depend on user inputs have been developed and need
to be maintained for years. During the course of the time,
as the requirements change and functionalities evolve, both
the documents and the program source code become more
complex and increasingly difficult to understand and main-
tain. Many of the documents become out of date and many
systems become largely undocumented [9]. This creates
problems in the maintenance of the input validation feature
implemented in those systems. When an update of an input
validation feature implemented in a system occurs, the
developers need to understand how the feature was imple-
mented before they can initiate the update. However, in
many cases, the system documents are not trustable
because the developers are not sure that they have made


mailto:liuh0007@ntu.edu.sg
mailto:ibktan@ntu.edu.sg 

450 H. Liu, H.B.K. Tan | Information and Software Technology 50 (2008) 449461

all the updates. On the other hand, the developers are not
confident to manually recover the input validation feature
from the code either. Therefore, there is a need for an
assisted approach to recover the input validation feature
from program source code and also aid the maintenance
of the feature.

This paper is an enhancement and extension of our pre-
vious work [19]. In the previous work, we introduce a var-
iant of control flow graph, called validation flow graph
(VFQG) for analyzing input validation implemented in a
program. Based on that, we then propose a method for
the recovery of input validation from source code and also
briefly introduce the techniques of VFG-guided slicing and
effect-oriented decomposition slicing that can be used to
aid the maintenance of input validation. In this paper,
the model for analyzing input validation is further
improved by refining the definitions and incorporating
empirical properties that characterize the implementation
of input validation. All the properties have been statisti-
cally validated. In addition, an algorithm is presented for
the recovery of input validation from source code. We also
propose several guidelines to elaborate the use of VFG-
guided slicing in the maintenance of input validation. The
case study is further enhanced with more details. The major
contributions of the paper include the followings:

(1) The introduction of the validation flow graph for
modeling input validation.

(2) The discovery of empirical properties that character-
ize the implementation of input validation through
empirical study and hypothesis testing.

(3) An automated method for the recovery of input val-
idation from source code.

(4) The techniques of VFG-guide slicing and effect-ori-
ented decomposition slicing for aiding the under-
standing and maintenance of input validation.

The paper is organized as follows. Section 2 introduces a
model and some empirical properties for characterizing
input validation. Section 3 discusses the proposed
approach. Section 5 compares our work with related work.
Finally, Section 6 concludes the paper.

2. Characterizing input validation
2.1. Analysis model

The analysis of the input validation feature implemented
in a program is based on the control flow graph of the pro-
gram. We shall adopt the formalism of control flow graph
[27]. A control flow graph (CFG) of a program P is a direc-
ted graph G = (N, E), in which N contains a set of nodes
and E = {(n,m) | n, m € N} contains edges that connecting
the nodes. Each node in G represents a statement in P, and
each edge in the G represents possible flow of control
between two statements in P. There is an entry node and

an exit node in a CFG representing entry to and exit from
P, respectively.

In a control flow graph, the data dependence represents
the data flow between program statements. A node y is
data dependent on a node x if and only if there exists a var-
iable v such that x defines v, y uses v and there is a path
from x to y along with which v is not redefined. The control
dependence is defined between conditional statement and
the statements whose executions are controlled by the con-
ditional statement. A node y dominates a node x if and only
if every path from the entry node to x contains y. A node y
postdominates a node x if and only if every path from x to
the exit node contains y. A node y is control dependent on a
node x if and only if x has successors x’ and x” such that y
postdominates x’ but y does not postdominate x”.

Let G be the CFG of a program. A node in G is called an
input node if it reads user inputs. A node in G is called an
effect node if it raises external effects. An external effect rep-
resents an output state or action that a program interacts
with its external environment. For example, in a database
application, once the input data is submitted by a user, a
program is executed to process the data submitted and
update system database. In the control flow graph of such
program, a node that read the data submitted is an input
node, and a node that updates the database maintained is
an effect node.

Next, we shall introduce a variant of control flow graph,
called validation flow graph (VFG), which provides essen-
tial information on the input validation feature imple-
mented in a program. The VFG of a program is
constructed from a set of nodes selected from the original
CFG of the program. An Edge is added to the VFG if
two nodes are connected in the original CFG via nodes
that are not in the VFG. For a program P that reads user
inputs and raises external effects, the VFG of P is con-
structed by identifying the input nodes, effect nodes, and
predicate nodes that control the execution of the input
nodes and effect nodes. The formal definition of validation
flow graph is given below:

Let G= (N, E) be the CFG of a program P where N and
E are its set of nodes and edges, respectively. Let N’ be the
subset of nodes in G that includes the following types of
nodes:

(1) Entry node and Exit node.

(2) All the input nodes.

(3) All the effect nodes.

(4) Node # in G such that a node in N’ is control depen-
dent on n.

Let E’ be the set of edges that connects the nodes in N'.
For each unordered pair of nodes (n,m) in N’, if there is a
path in G from n to m without passing through another
node in N’, an edge (n,m) in is included in E’. Formally,
we define E' = {(n,m) | n, m € N, n#m and there exists
a path (n,ny,...,n,m) in G such that k > 0 for all j,
1<j<k n¢gN'y.



Download English Version:

https://daneshyari.com/en/article/550614

Download Persian Version:

https://daneshyari.com/article/550614

Daneshyari.com


https://daneshyari.com/en/article/550614
https://daneshyari.com/article/550614
https://daneshyari.com

