ELSEVIER

Information and Software Technology 50 (2008) 462-479

Available online at www.sciencedirect.com

ScienceDirect

INFORMATION
AND
SOFTWARE
TECHNOLOGY

www.elsevier.com/locate/infsof

XTRON: An XML data management system using relational databases

Jun-Ki Min **, Chun-Hee Lee ®, Chin-Wan Chung °

& School of Internet-Media Engineering, Korea University of Technology and Education, Byeongcheon-myeon, Cheonan,
Chungnam 330-708, Republic of Korea
® Division of Computer Science, Department of Electrical Engineering & Computer Science Korea Advanced Institute of Science and Technology (KAIST),
Daejon, Republic of Korea

Received 30 June 2006; received in revised form 1 May 2007; accepted 16 May 2007
Available online 29 May 2007

Abstract

Recently, there has been plenty of interest in XML. Since the amount of data in XML format has rapidly increased, the need for
effective storage and retrieval of XML data has arisen. Many database researchers and vendors have proposed various techniques
and tools for XML data storage and retrieval in recent years. In this paper, we present an XML data management system using a rela-
tional database as a repository. Our XML management system stores XML data in a schema independent manner, and translates a com-
prehensive subset of XQuery expressions into a single SQL statement. Also, our system does not modify the relational engine. In this
paper, we also present the experimental results in order to demonstrate the efficiency and scalability of our system compared with

well-known XML processing systems.
© 2007 Elsevier B.V. All rights reserved.

Keywords: XML; Relational database; Query

1. Introduction

As data are collected over diverse application areas, the
requirement of inter-operability for sharing and integrating
them has increased. Therefore, W3C has proposed the
eXtensible Markup Language (XML) [4]. Due to its flexi-
bility and self-describing nature, XML is considered as
the de facto standard for data representation and exchange
in the Internet.

To retrieve XML data, several query languages have
been proposed. Among them, XQuery [2] is considered as
the standard query language for XML data since it is
broadly applicable across all types of XML data.

Since the amount of data in XML format has rapidly
increased, the need for effective storage and retrieval of
XML data has arisen. Many database researchers and ven-

" Corresponding author.
E-mail addresses: jkmin@kut.ac.kr (J.-K. Min), leechun@islab.kaist.
ac.kr (C.-H. Lee), chungew@islab.kaist.ac.kr (C.-W. Chung).

0950-5849/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2007.05.003

dors have proposed various techniques and tools for XML
storage and retrieval [3,6,11,10,13,21,28,35,39].

Text file systems, native XML management systems
(special-purpose systems), and traditional databases can
be used as repositories for XML data. Using a text file sys-
tem as an XML repository is the most convenient and pre-
valent approach. But, it is inefficient in retrieval since XML
data is always parsed into an intermediate format such as a
DOM tree.

An alternative for an XML repository is to use native
XML database systems such as LORE [25] and Strudel
[14]. LORE is designed for managing semi-structured data.
Its data model is Object Exchange Model (OEM) which is
a simple and nested object model. Strudel is a web-site man-
agement system and its data model is a labeled directed graph
similar to OEM. Obviously, these works suggest valuable
techniques and insights for the management of irregularly
structured data. However, it is uncertain whether these
approaches will be widely accepted in the real world since
they are not mature enough to process queries on a large
amount of data and in multi-user environments [17].


mailto:jkmin@kut.ac.kr
mailto:leechun@islab.kaist. ac.kr
mailto:leechun@islab.kaist. ac.kr
mailto:chungcw@islab.kaist.ac.kr

J.-K. Min et al. | Information and Software Technology 50 (2008) 462—479 463

In addition, native XML management systems have
two potential drawbacks as pointed in [33]. First, they
do not use the existing mature storage and query capabil-
ity. Second, they have difficulty in integrating the existing
data, most of which is relational data. And, major DBMS
vendors (SQL Server, Oracle, and DB2) have developed
an XML management system using an RDBMS. There-
fore, we focus an XML management system using an
RDBMS.

1.1. The goals of XTRON

In this paper, we present an XML data management sys-
tem using an RDBMS called XTRON. We have chosen to
use an RDBMS due to its ability to behave as a stable repos-
itory as well as an efficient query optimizer and executor.

The design goals of XTRON are as follows:

e No modification of the relational engine: The modifica-
tion of a relational engine may incur unintended side
effects such as the consistency problem. Thus, the main
goal of our design is to use the relational engine without
modification.

e schema independence: Some works [23,36] ignore the

schema information of XML data. In [39], the relational

schema using DTD is different from that without DTD.

Thus, a design goal of XTRON is to utilize schema

information if it is available and to store XML data over

identical relational tables whether DTD exists or not.

Efficient evaluation of path expressions: To support an

efficient evaluation of XML queries, some work uses

path indexes which incur the modification of the engine.

In contrast to the previous work, we represent a label

path as an interval in [0.0,1.0). Using the containment

relationships between intervals of label paths and an
interval of the path expression, the path expression
can be efficiently evaluated without the modification of

a relational engine.

In addition, to demonstrate the efficiency and scalability
of XTRON, we implemented XTRON and comparison
systems: edge approach, region approach, and region with
path table approach. Also, we show the effectiveness of
XTRON compared with well-known XML processing sys-
tems: Galax and Berkeley DB XML.

1.2. Organization

The remainder of the paper is organized as follows. In
Section 2, we present various methods for storing and
retrieving XML data. After we show the architecture of
XTRON in Section 3, we describe the details of storing
XML data in XTRON in Section 4. In Section 5, we pres-
ent mechanisms for XML data retrieval. Sections 6 and 7
show GUI of XTRON and the results of our experiments.
Finally, in Section 8, we summarize our work and suggest
some future studies.

2. Related work

Recently, in order to store XML documents using
relational database systems, many XML storage systems
and techniques using relational tables have been pro-
posed.

With respect to mapping of the graph model to rela-
tional tables, these mapping schemes are basically classified
into two groups: One is the edge approach [17] and the
other is the region approach [20,23,36,37,41].

The edge approach stores the edges in the XML graph
into the relational tables. In this approach, a unique node
identifier (nid) is assigned to each node of the XML graph.
An edge of the XML graph is represented as <nid,, label,
nid,> where nid, is a node identifier for the source of the
edge, nid, is a node identifier for the target of the edge,
and label is the label of the target node. Generally, the
edge approach is efficient in computing parent—child
relationships. However, the edge approach is inefficient in
computing ancestor—descendant relationships since ances-
tor—descendant relationships are computed by the massive
joins for parent—child relationships.

The edge approach has many alternatives according to
the mapping rule from a set of edges to relational tables.
Florescu and Kossman [17] provided three alternatives.
The first one is to store all edges in a single table, called
an edge table. The second one is to partition all edges with
respect to the label. Then, each sub-group of edges is
stored in distinct tables, called a binary table. The last
one, a universal table approach, is to store all sequences
of edges to leaf nodes of the XML graph in a single table
which is equal to the result of a full outer join of binary
tables.

Based on the edge approach, [35] suggested the inlining
technique which utilizes the structural information con-
tained in a DTD (Document Type Definition). The
intuitive behavior of the inlining approach is that if one-
to-many or many-to-many relationship between element
nodes are defined in DTD, then sets of edges between
the element nodes are mapped to different tables, other-
wise (i.e., one-to-one relationship), sets of edges between
the element nodes are mapped to the same table using
the inlining technique. Thus, the inlining approach reduces
the join overhead for evaluating queries. However, this
inlining technique may lose the order information of child
elements.

The region approach originated from the information
retrieval (IR) field [7,29]. In this approach, XML data is
considered as a tree structured data. As shown in Fig. 2
which is an example of the region approach corresponding
to Fig. 1, this approach assigns a region to an element in
XML data. Generally, a region is represented by a pair
(start, end) consisting of the position of the start tag and
the position of the end tag of an element.

The root node & 1 in Fig. 1(b) is represented by (1,2000)
when XML data in Fig. 1(a) has 2000 words. In this case, a
region satisfies the following property.



Download English Version:

https://daneshyari.com/en/article/550615

Download Persian Version:

https://daneshyari.com/article/550615

Daneshyari.com


https://daneshyari.com/en/article/550615
https://daneshyari.com/article/550615
https://daneshyari.com

