
Investigating dependencies in software requirements for change
propagation analysis

He Zhang a,⇑, Juan Li c, Liming Zhu b, Ross Jeffery b, Yan Liu d, Qing Wang c, Mingshu Li c

a State Key Laboratory of Novel Software Technology, Software Institute, Nanjing University, Jiangsu, China
b NICTA, University of New South Wales, Australia
c Institute of Software, Chinese Academy of Sciences, China
d Faculty of Engineering and Computer Science, Concordia University, Canada

a r t i c l e i n f o

Article history:
Available online 20 July 2013

Keywords:
Requirement dependency
Requirement traceability
Requirement relationship
Change propagation
Impact analysis
Case study

a b s t r a c t

Context: The dependencies between individual requirements have an important influence on software
engineering activities e.g., project planning, architecture design, and change impact analysis. Although
dozens of requirement dependency types were suggested in the literature from different points of inter-
est, there still lacks an evaluation of the applicability of these dependency types in requirements engi-
neering.
Objective: Understanding the effect of these requirement dependencies to software engineering activities
is useful but not trivial. In this study, we aimed to first investigate whether the existing dependency types
are useful in practise, in particular for change propagation analysis, and then suggest improvements for
dependency classification and definition.
Method: We conducted a case study that evaluated the usefulness and applicability of two well-known
generic dependency models covering 25 dependency types. The case study was conducted in a real-world
industry project with three participants who offered different perspectives.
Results: Our initial evaluation found that there exist a number of overlapping and/or ambiguous depen-
dency types among the current models; five dependency types are particularly useful in change propa-
gation analysis; and practitioners with different backgrounds possess various viewpoints on change
propagation. To improve the state-of-the-art, a new dependency model is proposed to tackle the prob-
lems identified from the case study and the related literature. The new model classifies dependencies into
intrinsic and additional dependencies on the top level, and suggests nine dependency types with precise
definitions as its initial set.
Conclusions: Our case study provides insights into requirement dependencies and their effects on change
propagation analysis for both research and practise. The resulting new dependency model needs further
evaluation and improvement.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

In developing software intensive systems, most individual
requirements relate to and affect each other in complex manners
[26]. Various and complex dependencies among requirements
increase the difficulties in understanding the requirements and
influence many software engineering activities such as architec-
ture design [18], product release planning [6] and change impact
analysis [27]. Requirement dependencies are also important inputs
for component selection [14] and web service composition [31].

In recent volatile environment, software systems must evolve to
adapt themselves to the rapid changes of stakeholders’ needs, tech-
nologies and business environments [20]. To control the risks
brought by software evolution, it is vital to analyse change propa-
gation in order to determine what other parts of a software may be
affected if a change is made. Evolution of software systems is
mostly studied at the level of code and design with a focus on code
reengineering/migration, architectural evolution and software
refactoring [1,34]. However, it is also necessary to analyse change
propagation earlier at the requirements level. This kind of change
propagation analysis can provide important change-related infor-
mation from a business point of view. Requirements-level change
propagation analysis has also been regarded as one important area
in software evolution research [13].

Requirements dependency is the relationship between
requirements and acts as the basis for change propagation analysis.

0950-5849/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2013.07.001

⇑ Corresponding author. Tel.: +86 25 83621369; fax: +86 25 83621370.
E-mail addresses: dr.hezhang@gmail.com (H. Zhang), lijuan@itechs.iscas.ac.cn

(J. Li), liming.zhu@nicta.com.au (L. Zhu), ross.jeffery@nicta.com.au (R. Jeffery),
yan.liu@concordia.ca (Y. Liu), wq@itechs.iscas.ac.cn (Q. Wang), mingshu@itechs.
iscas.ac.cn (M. Li).

Information and Software Technology 56 (2014) 40–53

Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2013.07.001&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2013.07.001
mailto:dr.hezhang@gmail.com
mailto:lijuan@itechs.iscas.ac.cn
mailto:liming.zhu@nicta.com.au
mailto:ross.jeffery@nicta.com.au
mailto:yan.liu@concordia.ca
mailto:wq@itechs.iscas.ac.cn
mailto:mingshu@itechs.iscas.ac.cn
mailto:mingshu@itechs.iscas.ac.cn
http://dx.doi.org/10.1016/j.infsof.2013.07.001
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


Dozens of dependency types have been proposed to reflect the
complex relationships between requirements at both structural
and semantic levels. These dependency types have different levels
of abstraction and are used in various aspects of project manage-
ment. Pohl [24], Dahlstedt and Persson [9] proposed the depen-
dency types respectively based on literature survey in the areas
of requirements engineering. Karlsson et al. introduced the depen-
dency types to prioritise requirements [17]. Carlshamre et al. pre-
sented a study of requirements dependencies in release planning
[7].

However, there still lacks an evaluation of the applicability of
these dependency types in a real-world project and their effective-
ness in change propagation analysis. This limits the wide use of
these dependency types for both dependency identification and
change propagation analysis. In practise, researchers and practitio-
ners usually choose from these dependency types based on their
own experiences and ignore other dependencies that may propa-
gate changes. As a result, the accuracy of the change propagation
result may decrease. In one of our early studies [23] we chose three
dependency types arbitrarily from Dahlstedt’s dependency model
[9] to estimate the change impact at the code level. This choice
ignored other dependency types in Dahlstedt’s dependency model
that may have propagated changes and subsequently influenced
our change propagation estimation. In addition, some change
impact analysis research merely focuses on change propagation
in a specific requirements model, such as use case map model
[15], which severely constrains the range of dependency types
and causes change propagation analysis incomplete.

Given the very limited evaluation endeavour on requirements
dependency, our research aims to empirically investigate the use-
fulness and applicability of existing dependency models (types),
and further propose the improvements that are based upon the
evaluation results to effectively facilitate dependency identifica-
tion and change propagation analysis. To achieve the goals, we
conducted a case study with three participants to evaluate the use-
fulness and applicability of existing dependency types in a real-
world industry project. The evaluation objects are 25 dependency
types defined in Dahlstedt’s dependency model (D-model) [9]
and Pohl’s dependency model (P-model) [24], which are the two
most adopted dependency models in software requirements. This
case study is aimed to answer four research questions:

RQ1 What dependency types are (not) used to identify relationships
between requirements and why?

RQ2 What dependency types are (not) used in change propagation
analysis and why?

RQ3 How effective/ineffective are dependency types used?
RQ4 What are the main factors affecting the discovery of

dependencies?

Corresponding with these research questions, the evaluation
presented in this article has found that: (1) seven dependency
types in the P-model and three dependency types in the D-model
were deemed applicable by the practitioners to describe relation-
ships between requirements; (2) five dependency types can indi-
cate change propagation particularly well, but their definitions
need to be clarified; (3) dependency types are helpful to find more
dependencies, but some dependency types have ambiguous defini-
tions or overlap with each other which increases the difficulty of
use; and (4) four main factors affecting the discovery of dependen-
cies. We also find participants with various backgrounds have dif-
ferent viewpoints on change propagation. Change impact analysis
should involve a wide range of stakeholders including project man-
agers, requirements engineers, designers and developers. More-
over, we provide a group of specific dependency types for change
propagation analysis based on our empirical findings.

Based upon our empirical evaluation of existing dependency
models and the critique of current dependency types, we further
propose a new dependency model by refining, integrating and
extending the previous ones. The new dependency model classifies
dependencies into intrinsic dependencies and additional dependen-
cies on the top level. The former reflects essential dependencies
existing among requirements, which are more likely to impact
many various software engineering activities; the latter represent
relationships imported by certain software engineering tasks. The
initial set of the new model includes nine generic dependency
types.

This article is the extended version of the conference paper
published in EASE 2012 [22]. Compared to the original version,
the major extensions in this article are the detailed description of
the case study design, execution, and data analysis (Section 3
and 4), as well as the presentation of a new dependency model
(Section 5) based on the findings from the case study. In addition,
this article also include numerous minor updates, corrections, and
enhancements to the conference paper.

The rest of this article is structured as follows. Section 2 intro-
duces the background and the related work about requirements
traceability, requirement dependency, and change propagation
analysis, and also briefly compares the existing dependency types
whose problems motivated our research. Section 3 describes the
context and method of the case study for evaluating the existing
dependency types. The results and analysis of the case study are
reported in Section 4 for answering the research questions in terms
of usefulness and applicability. Section 5 proposes a new depen-
dency model and redefines a set of common dependency types
based on our empirical findings. Section 6 discusses the depen-
dency types for change propagation analysis in particular as well
as the limitations of our study at this stage. We conclude our
research with suggestions for further work in Section 7.

2. Background and motivations

2.1. Dependency in requirements engineering

In order to analyse the impact of a proposed software change, it
is vital to determine which parts of the software system may be
affected by the change and ascertain their possible risks [5].
Change propagation means that a change can impact on not only
source code, but also other software artifacts, such as require-
ments, design and test cases [4]. Bohner proposed an impact anal-
ysis process [5] which examines the change requests to identify the
Starting Impact Set (SIS) of software artifacts that could be affected
by the required change. Artifacts in the SIS are then analyzed to
identify other artifacts anticipated to be affected. The newly iden-
tified artifacts are incorporated into SIS to form the Candidate Im-
pact Set (CIS). On the other hand, an Actual Impact Set (AIS)
consists of the set of artifacts actually modified after the change
is implemented. The goal of the impact analysis process is to
estimate a CIS that is as close as possible to the AIS. Along this to-
pic, Fasolino and Visaggio [12] showed how CIS can be determined
step by step starting from the highest-level documentation (e.g.,
requirements specification) affected by the changes down to the
source code to be changed. This top-down analysis approach can
be efficiently supported through traceability information [10].

Traceability research is gaining an increasing attention in many
areas such as requirements engineering and model driven
architecture [29]. A traceability link is ‘‘any relationship that exists
between artefacts involved in the software engineering life cycle’’
[2]. It includes not only the forward and backward links between
artefacts (e.g., requirements and architecture, requirements and
code), but also links between items within a software development

H. Zhang et al. / Information and Software Technology 56 (2014) 40–53 41



Download English Version:

https://daneshyari.com/en/article/550622

Download Persian Version:

https://daneshyari.com/article/550622

Daneshyari.com

https://daneshyari.com/en/article/550622
https://daneshyari.com/article/550622
https://daneshyari.com

