
Testing web applications

Nashat Mansour*, Manal Houri

Computer Science and Mathematics Division, Lebanese American University, Mme Curie Street, Beirut 11208, Lebanon

Received 10 September 2004; revised 17 February 2005; accepted 19 February 2005

Available online 17 May 2005

Abstract

Traditional testing techniques are not adequate for web-based applications, since they miss their additional features such as their multi-tier

nature, hyperlink-based structure, and event-driven feature. Limited work has been done on testing web applications. In this paper, we

propose new techniques for white box testing of web applications developed in the .NET environment with emphasis on their event-driven

feature. We extend recent work on modeling of web applications by enhancing previous dependence graphs and proposing an event-based

dependence graph model. We apply data flow testing techniques to these dependence graphs and propose an event flow testing technique.

Also, we present a few coverage testing approaches for web applications. Further, we propose mutation testing operators for evaluating the

adequacy of web application tests.

q 2005 Elsevier B.V. All rights reserved.

Keywords: Coverage testing; Data flow testing; Event flow testing; Dependence graphs; Mutation testing; Web applications

1. Introduction

The basic structure of web applications consists of three

tiers: the client, the server and the data store. Web

applications started simple and static and consisted mostly

of HyperText Markup Language (HTML) pages. Then, the

integration of HTML and other scripting languages has

provided not only sophisticated web applications but also

new issues that have to be addressed. The recent Microsoft’s

.NET platform has lowered the barriers to web software

development [1]. Due to its widespread use, we focus on.

NET web applications in this work; nevertheless, most of

the techniques presented apply to web applications devel-

oped in various environments.

Active Server Pages (ASP.NET) supports event-driven

programming. That is, objects on a web page can expose

events that can be processed by ASP.NET code. ASP.NET

also provides a language-neutral execution framework for

web applications [1]. It includes a range of useful classes

and namespaces. Namespaces are used as an organizational

system, i.e. a way to present program components that are

exposed to other programs and applications. ASP.NET

provides several server controls that simplify the task of

creating web pages. Server controls are tags that are

understood by the server. These server controls encapsulate

common tasks that range from displaying calendars and

tables to validating user input. Traditional web applications

contain a mix of HTML and scripts, making the code

difficult to read, test, and maintain. ASP.NET alleviates this

problem by promoting the separation of code and content

using the code-behind feature. The user interface and the

user interface programming logic need not be necessarily

written in a single page. Thus, a web page consists mainly of

a ‘presentation file’, that contains the HTML tags and the

‘code-behind’ class that contains methods and data items

required for the class to perform specific actions. ASP.NET

offers flexibility in usage of code-behind languages and

allows a range of programming languages.

Testing is the process of revealing errors that is used to

give confidence that the implementation of a program meets

its specifications. Testing techniques are usually classified

as black-box and white-box. Black-box methods are

specification based such as equivalence partitioning,

boundary value analysis, random testing and functional

analysis-based testing [2,3]. White-box testing methods are

code based such as statement testing, branch testing, path

testing, predicate testing, dataflow testing, mutation testing

Information and Software Technology 48 (2006) 31–42

www.elsevier.com/locate/infsof

0950-5849/$ - see front matter q 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2005.02.007

* Corresponding author. Tel.: C961 3 379647; fax: C961 1 867098.

E-mail addresses: nmansour@lau.edu.lb (N. Mansour), mhouri@idm

net.lb (M. Houri).

http://www.elsevier.com/locate/infsof

and domain testing [2,4–6]. In particular, mutation testing is

a technique for evaluating the adequacy of test cases [7].

Web applications are complex, ever evolving, and

rapidly updated software systems. Their testing is both

challenging and critical. It is challenging because traditional

testing methods and tools are not sufficient for web-based

applications, since they do not address their distinctive

features. Examples of the new features of web applications

are: extensive use of events, rich graphical user interface,

and incorporation of server side scripting. Testing web-

based applications is critical because failure may be very

costly. A failure in Amazon.com in 1998 put the site offline

for several hours, with an estimated cost of $400,000 [8].

Research on web-based applications testing has been

fairly limited. Some work has been recently published. Ricca

and Tonnella [9] suggest a UML model of web applications

and propose that all paths that satisfy selected criteria be

tested. Ricca and Tonnella [10,11] investigate web appli-

cation slicing and data flow testing of web applications; their

work is further referred to in the body of this paper. Di Lucca

[12] employs an object-oriented model of a web application

and proposes to test single units of a web application as well

as integration testing. Gabrys and Dick [13] suggest that

testing web applications should be driven by factors that are

most associated with achieving business objectives. Wu and

Offutt [8] define a generic analysis model that characterizes

typical behavior of web-based applications independently of

different technologies. Elbaum et al. [14] explore the notion

that user session data gathered as users operate web

applications can be employed in the testing of those

applications. Jia and Liu [15] propose an approach for testing

web applications using formal specifications. In [16], data

flow information of the web application using flow graphs is

captured; test cases devised for these flow graphs are based on

intra-object, inter-object, and inter-client perspectives.

In this paper, we present new white box techniques for

testing web applications developed in the .NET environ-

ment. These techniques emphasize the distinct features of

web-based programs, including their multi-tier nature,

extensive use of events, and hyperlinked structure. First,

we extend previous work on modeling web applications by

enhancing previous dependence graphs and proposing an

event-based dependence graph model. Second, we apply

data flow testing methods to the dependence graphs and

propose an event flow testing technique. Third, we present a

few coverage testing approaches. Fourth, we propose

mutation testing operators for evaluating the adequacy of

web application tests. These techniques are illustrated with

examples based on a .NET web application. Our approach to

testing web applications is based on a fault model that

characterizes plausible faults and classifies them into four

types. The first type consists of navigation faults that are

related to traversing the network of web pages presented

by an application. Examples of such faults are: retrieving

the wrong page or element upon executing a link;

inconsistent sequence of retrieved pages vis-a-vis

the navigation design. The second type of faults consists

of interface faults that are related to interaction with users.

Examples of these faults are: faults in the way graphical user

interface elements implement the semantics of navigation or

content display; missing or invalid data or wrong type (e.g.

‘HIDDEN’) for INPUT elements; graphical user interface

elements (buttons, check boxes, etc..) not enabled/dis-

abled correctly. The third type of faults consists of

integration faults that are related to the integration of

collaborating web pages, of presentation and code-behind,

and of code and databases. Examples of these faults are:

collaboration/inheritance faults between presentation and

code-behind parts; improper conformance of behavior with

use-case scenarios and semantics; incorrect updating of

databases in response to service requests (e.g. add, delete);

wrong response/message of server-side code-behind parts in

response to requests initiated at the presentation front end.

The fourth type of faults consists of traditional faults such as

faults in script functions and incorrect computations

returned by processing methods of the application. The

fourth type of faults is addressed using traditional testing

techniques and is not pursued in this paper.

This paper is organized as follows. Section 2 gives

dependence graph models for .NET web applications.

Sections 3 and 4 present data flow testing, event flow

testing, and coverage-based testing. Section 5 introduces

mutation testing operators. Section 6 concludes the paper.

2. Dependence graph modeling

In this section, we present dependence graph models

of.NET web applications. To illustrate our approach, we use

a web application, ‘To Do List’, for a simple personal

agenda shown in Fig. 1. This application contains only the

essential elements of an agenda and was taken from [17]. It

consists of two presentation ASP front ends (ToDoLis-

t.aspx, and EditItem.aspx) and two C# code-behind classes

(todolist.aspx.cs and EditItem.aspx.cs) which are listed

in the Appendix. As depicted in Fig. 1, the user views

his/her unfinished tasks by priority order. Once finished with

a task, the user can close it by clicking ‘Done’. This removes

the task from the open items and places it in the closed

items. A user can also do other things such as ‘Edit a task’,

‘Delete a task’, ‘Add item to agenda’, ‘Review item’, etc...

Some work has been reported on slicing web applications

in [10,11] based on control, data, and call dependences.

According to their work, a control/contain dependence

holds between two statements if one defines a scope that

directly contains the other; in the dependence graph, it is

represented by a straight directed edge pointing to the

dependent (contained) statement. Data dependence holds

between two statements if one defines the value of a variable

that is used by the other; in the dependence graph, it is

represented by a curved directed edge. Fig. 2 illustrates

control and data dependences. Also, call dependence holds

N. Mansour, M. Houri / Information and Software Technology 48 (2006) 31–4232

Download English Version:

https://daneshyari.com/en/article/550682

Download Persian Version:

https://daneshyari.com/article/550682

Daneshyari.com

https://daneshyari.com/en/article/550682
https://daneshyari.com/article/550682
https://daneshyari.com

