Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

Functional characterization of alpha-synuclein protein with antimicrobial activity

Seong-Cheol Park ^{a, 1}, Jeong Chan Moon ^{b, c, 1}, Su Young Shin ^{b, 1}, Hyosuk Son ^d, Young Jun Jung ^b, Nam-Hong Kim ^a, Young-Min Kim ^a, Mi-Kyeong Jang ^{a, **}, Jung Ro Lee ^{b, *}

^a Department of Polymer Science and Engineering, Sunchon National University, Suncheon, Jeollanam-do, 57922, Republic of Korea

^b National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun, 33657, Republic of Korea

^c DNA Analysis Section, Busan Institute of National Forensic Service, 50 Kumoh-ro, Mulgum-eup, Yangsan-si, Gyeongsangnam-do, 50612, Republic of Korea

^d National Marine Biodiversity Institute of Korea, 75 Jangsan-ro, Janghang-eup, Seocheon-gun, 33662, Republic of Korea

ARTICLE INFO

Article history: Received 27 July 2016 Accepted 8 August 2016 Available online 9 August 2016

Keywords: Alpha-synuclein Antibacterial activity Antifungal activity Defense mechanism

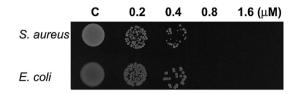
ABSTRACT

Alpha-synuclein (α -Syn), a small (14 kDa) protein associated with Parkinson's disease, is abundant in human neural tissues. α -Syn plays an important role in maintaining a supply of synaptic vesicles in presynaptic terminals; however, the mechanism by which it performs this function are not well understood. In addition, there is a correlation between α -Syn over-expression and upregulation of an innate immune response. Given the growing body of literature surrounding antimicrobial peptides (AMPs) in the brain, and the similarities between α -Syn and a previously characterized AMP, Amyloid- β , we set out to investigate if α -Syn shares AMP-like properties. Here we demonstrate that α -Syn exhibits antibacterial activity against *Escherichia coli* and *Staphylococcus aureus*. In addition, we demonstrate a role for α -Syn in inhibiting various pathogenic fungal strains such as *Aspergillus flavus, Aspergillus fumigatus* and *Rhizoctonia solani*. We also analyzed localizations of recombinant α -Syn protein in *E. coli* and *Candida albicans*. These results suggest that in addition to α -Syn's role in neurotransmitter release, it appears to be a natural AMP.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Alpha-Synuclein (α -Syn) is a small soluble protein that is expressed in vertebrate neuronal cells and other tissues including the heart, skeletal muscle, pancreas and placenta [1–4]. It is an acidic protein of 140-amino acids with 3 distinct regions. The highly conserved N-terminal region (1–65) contains KTKEGV repeats, which fold into two amphipathic α -helical lipid-binding motifs that are quite similar to the lipid-binding domain of apolipoproteins [5]. The central region (66–95) is hydrophobic and referred to as the non-amyloid- β component of plaques. Finally, the less conserved C-terminal region (96–140) is rich in proline and the acidic amino acids, glutamic and aspartic acids, and is known to mediate many of α -Syn's protein-protein interactions [6–8]. α -Syn is a known component of Lewy bodies in Parkinson's disease (PD), Multiple System Atrophy (MSA) and is predominantly expressed in the nucleus of mammalian brain neurons with both soluble and membrane-bound forms [6,9,10]. Although the precise function of α -Syn is still unclear, several lines of evidence demonstrate its propensity to interact directly with negatively charged phospholipid vesicles or mitochondria-associated membranes. Through these interactions, α -Syn is believed to regulate lipid and calcium homeostasis [11–14]. α -Syn's propensity to interact with membranes is believed to be central to its role in neurotransmitter release [15,16] and synaptic vesicle trafficking [17–19].


During pathogenesis, α -Syn is commonly found in plaques with another small protein, amyloid- β . Amyloid- β , a membrane-binding protein with a host of known ligands in the brain, is regulated by environmental stressors and is capable of inducing an innate immune response. Recently, Soscia et al. reported that amyloid- β protein, a key mediator of Alzheimer's disease (AD), also serves as an antimicrobial peptide (AMP) with potent, broad-spectrum killing activity against several microorganisms [20]. This AMP

^{*} Corresponding author.

^{**} Corresponding author.

E-mail addresses: jmk8856@sunchon.ac.kr (M.-K. Jang), leejr73@nie.re.kr (J.R. Lee).

¹ These authors contributed equally to this work.

Fig. 1. Antibacterial activity of α -Syn against *S. aureus* and *E. coli*. The α -Syn protein of indicated concentrations was incubated with *S. aureus* and *E. coli* cells and spotted onto Mueller Hinton agar plates. 25 mM Hepes buffer (pH 7.2) was used as a control (c). The colony survival of bacterial cells was then analyzed after 24 h incubation at 37 °C. The data are representative of five experiments, all of which gave similar results.

activity may explain the link between amyloid- β and the innate immune system in the brain.

As α -Syn and amyloid- β share many characteristics, including membrane binding and the ability to induce an innate immune response, we sought to determine if the human α -Syn protein is also an AMP. For the first time, we demonstrate that α -Syn does indeed have antifungal and antibacterial properties. Based on our findings, we propose that the AMP properties of α -Syn may contribute to the emerging field of innate immunity in the human brain.

2. Materials and methods

2.1. Materials

Carboxytetramethylrhodamine succinimidyl ester and SYTOXgreen was obtained from Molecular Probes (Eugene, OR). All other reagents were of analytical grade.

2.2. Cloning of the a-Syn gene and the expression of the protein in *E*. coli

The full-length gene of the protein was isolated from a human cDNA library using PCR and then ligated into the pET28a vector (Novagen). The His-tag fusion system was used to generate the recombinant protein in *Escherichia coli* strain BL21 (pLysS). The α -Syn protein was purified with a Ni-NTA agarose affinity gel. The eluted protein was dialyzed with 25 mM Hepes (pH 7.2).

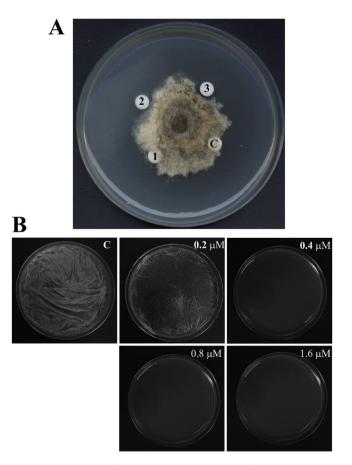
2.3. Assay for antibacterial activity

The antibacterial activity of α -Syn toward *Staphylococcus aureus* (American Type Culture Collection; ATCC 25923), *E. coli* (ATCC 25922), *Pseudomonas aeruginosa* (ATCC 15692) and *Staphylococcus epidermidis* (ATCC 12228) was assessed using a microdilution assay performed in a plate according the method previously described [21].

2.4. Assay for antifungal activity

We used a radial growth inhibition assay to analyze the antifungal activity of the protein. We also carried out a microdilution assay in a plate in order to evaluate the effective concentration, as described previously [22]. The following fungal strains were used: *Aspergillus flavus* (KCTC 6905), *Aspergillus fumigatus* (KCTC 6145), *Aspergillus parasiticus* (KCTC 6598), *Candida albicans* (KCTC 7270), *Candida tropicalis* (KCTC 7221), *Filobasidiella neoformans* (KCTC 7003) and *Trichoderma harzianum* (KCTC 6043) were obtained from Korea Collection for Type Cultures, and *Rhizoctonia solani* (KACC 40138) were obtained from Korea Agricultural Culture Collection.

2.5. Confocal laser scanning microscopy


We used confocal laser scanning microscopy to analyze the cellular distribution of the α -Syn protein in *E. coli* and *Candida albicans*. Cell suspensions (10⁴ conidia/ml) were put on poly-L-lysine-coated glass slides and the slides were incubated at RT for 45 min for cell adhesion to the slides. After PBS washing, rhodamine-labeled α -Syn was added to the cells. The slides were rinsed several times with PBS and then examined using a Zeiss (Gottingen, Germany) laser scanning microscope (LSM 510META).

2.6. SYTOX-green uptake ability of α -Syn in E. coli cells

E. coli cells grown to mid-logarithmic phase at 37 °C were suspended (2 × 10⁷ cells/ml) in 10 mM sodium phosphate buffer (pH 7.2). The cells were then incubated with 1 μ M SYTOX green for 15 min in the dark. After the addition of α -Syn protein with serial diluted concentrations, the time-dependent increases in fluorescence caused by the binding of the cationic dye to intracellular DNA were monitored (excitation wavelength, 485 nm; emission wavelength, 520 nm).

3. Results and discussion

 α -Syn closely resembles amyloid- β in many features, including membrane binding and the formation of uncharacterized pore in β -

Fig. 2. Antifungal activity of α -Syn against fungal cells. Purified α -Syn protein was subjected to radial growth inhibition tests with *R. solani* (A), and *C. albicans* (B). (A) Paper disks were loaded with buffer alone as negative control (disk C; 25 mM Hepes buffer, pH 7.2) or with 1.6 μ M (disk 1), 3.2 μ M (disk 2), or 6.4 μ M (disk 3) of purified α -Syn protein. (B) The *C. albicans* colony was then analyzed after 24 h incubation at 28 °C in the absence (c, 25 mM Hepes buffer, pH 7.2) or presence of α -Syn protein.

Download English Version:

https://daneshyari.com/en/article/5506834

Download Persian Version:

https://daneshyari.com/article/5506834

Daneshyari.com