
Static analysis of Android programs

Étienne Payet a,⇑, Fausto Spoto b

a LIM-IREMIA, Université de la Réunion, France
b Dipartimento di Informatica, Università di Verona, Italy

a r t i c l e i n f o

Article history:
Received 14 December 2011
Received in revised form 24 May 2012
Accepted 25 May 2012
Available online 1 June 2012

Keywords:
Program verification
Static analysis
Abstract interpretation
Android

a b s t r a c t

Context: Android is a programming language based on Java and an operating system for embedded and
mobile devices, whose upper layers are written in the Android language itself. As a language, it features
an extended event-based library and dynamic inflation of graphical views from declarative XML layout
files. A static analyzer for Android programs must consider such features, for correctness and precision.
Objective: Our goal is to extend the Julia static analyzer, based on abstract interpretation, to perform for-
mally correct analyses of Android programs. This article is an in-depth description of such an extension,
of the difficulties that we faced and of the results that we obtained.
Method: We have extended the class analysis of the Julia analyzer, which lies at the heart of many other
analyses, by considering some Android key specific features such as the potential existence of many entry
points to a program and the inflation of graphical views from XML through reflection. We also have sig-
nificantly improved the precision of the nullness analysis on Android programs.
Results: We have analyzed with Julia most of the Android sample applications by Google and a few larger
open-source programs. We have applied tens of static analyses, including classcast, dead code, nullness
and termination analysis. Julia has found, automatically, bugs, flaws and inefficiencies both in the Google
samples and in the open-source applications.
Conclusion: Julia is the first sound static analyzer for Android programs, based on a formal basis such as
abstract interpretation. Our results show that it can analyze real third-party Android applications, with-
out any user annotation of the code, yielding formally correct results in at most 7 min and on standard
hardware. Hence it is ready for a first industrial use.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Android is a main actor in the operating system market for mo-
bile and embedded devices such as mobile phones, tablets and
televisions. It is an operating system for such devices, whose upper
layers are written in a programming language, also called Android.
As a language, Android is Java with an extended library for mobile
and interactive applications, hence based on an event-driven archi-
tecture. Any Java compiler can compile Android applications, but
the resulting Java bytecode must be translated into a final, very
optimized, Dalvik bytecode to be run on the device.

Static analysis of Android applications is important because
quality and reliability are keys to success on the Android market
[2]. Buggy applications get a negative feedback and are immediately
discarded by their potential users. Hence Android programmers
want to ensure that their programs are bug-free, for instance that
they do not throw any unexpected exception and do not hang the

device. But Android applications are also increasingly deployed in
critical contexts, even in military scenarios, where security and reli-
ability are of the utmost importance. For such reasons, an industrial
actor such as Klocwork [16] has already extended its static analysis
tools from Java to Android, obtaining the only static analysis for An-
droid that we are aware of. It is relatively limited in power, as far as
we can infer from their web page. We could not get a free evaluation
licence.

A tool such as Klocwork is based on syntactical checks. This
means that bugs are identified by looking for typical syntactical
patterns of code that often contain a bug. The use of syntactical
checks leads to very fast and practical analyses. However, it fails
to recognize bugs when the buggy code does not follow the prede-
fined patterns known by the analyzer. The situation is the opposite
for semantical tools such as Julia, where bugs are found where the
artificial intelligence of the tool, based on formal methods, has not
been able to prove that a program fragment does not contain a bug.
This second scenario is much more complex and computationally
expensive, but provides a guarantee of soundness for the results:
if no potential bug (of some class) is found, then there is no bug
of that class in the code. In other terms, syntactical tools are fast

0950-5849/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2012.05.003

⇑ Corresponding author.
E-mail addresses: etienne.payet@univ-reunion.fr (É. Payet), fausto.spoto@

univr.it (F. Spoto).

Information and Software Technology 54 (2012) 1192–1201

Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://dx.doi.org/10.1016/j.infsof.2012.05.003
mailto:etienne.payet@univ-reunion.fr
mailto:fausto.spoto@ univr.it
mailto:fausto.spoto@ univr.it
http://dx.doi.org/10.1016/j.infsof.2012.05.003
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

but unsound. Both approaches signal false alarms, that is, potential
bugs that are actually not a real bug. Precision (i.e., the amount of
real bugs w.r.t. the number of warnings) is the key issue here, since
the number of false alarms should not overwhelm the user of the
tool. This is acknowledged by most developers of static analysis
tools. For instance, we can quote the web page of Coverity [7]:
‘‘By providing the industry’s most accurate analysis solution and
the lowest false positive rate, you can focus on the real and rele-
vant defects instead of wasting development cycles’’. Hence, most
of the effort of the developer of a static analyzer is towards the
reduction of the number of false positives. This is much more
difficult for sound analyzers, since they cannot just throw away
warnings and nevertheless stay sound. In any case, the presence
of a company such as Klocwork on this market shows that industry
recognizes the importance of the static analysis of Android code.

A more scientific approach is underlying the SCanDroid tool [14],
currently limited to security verification of Android applications. It
performs an information flow analysis of Android applications,
tracking inter-component communication through intents and the
potential illegal acquisition of security privileges through a coali-
tion of applications. Its basis is a constraint-based analysis of the
code and there is a soundness guarantee, at least for a restricted
kind of bytecodes. Klocwork does not currently perform any infor-
mation flow analysis of Android applications.

Julia is a static analyzer for Java bytecode, based on abstract
interpretation [6], that ensures, automatically, that the analyzed
applications do not contain a large set of programming bugs. It
applies non-trivial whole-program, interprocedural and semantical
static analyses, including classcast, dead code, nullness and termi-
nation analysis. It comes with a correctness guarantee, as it is typ-
ically the case in the abstract interpretation community: if the
application contains a bug, of a kind considered by the analyzer,
then Julia will report it. This makes the result of the analyses more
significant. Although Java and Android are the same language, with
a different library set, the application of Julia to Android is not
immediate and we had to solve many problems before Julia could
analyze Android programs in a correct and precise way. Many are
related to the different library set, others to the use of XML to build
part of the application. In this article, we present those problems
together with our solutions to them and show that the resulting
system analyzes non-trivial Android programs with high degree
of precision and finds bugs in third-party code. This paper does
not describe in detail the static analyses provided by Julia, already
published elsewhere, but only the adaptation to Android of the
analyzer and of its analyses. In particular, our class analysis, at
the heart of simple checks such as classcast and dead code analysis,
is described in [27]; our nullness analysis is described in [25,26];
our termination analysis is described in [28].

It must be stated that our Julia analyzer is not sound in the pres-
ence of reflection, redefinitions of the class loading mechanism of
Java and multithreading. This does not mean that programs using
those features cannot be analyzed, but only that the results might
be incorrect. Actually, one main achievement of our work has been
to teach Julia about the specific use of reflection that is done during
the XML layout inflation in Android, so that the results of the anal-
ysis remain sound in that case (but not for other uses of reflection).

Our analyzer assumes a closed world assumption, in the sense
that, for instance, it assumes that, at the entry points, variables
might be bound to every class compatible with their declared type,
might share in any possible way or hold null. The same assumption
cannot be made for libraries, that can be expanded and whose
behavior can be modified by subclassing. Hence ours is not a mod-
ular analysis for libraries since we only analyze complete (closed)
Android applications.

There are many static analyzers that are able to analyze Java
source code and find bugs or inefficiencies. Most of them are based

on syntactical analyses (Checkstyle [4], Coverity [7], FindBugs
[11,3], PMD [23]) or use theorem proving with some simplifying
(and in general unsound) hypotheses (ESC/Java [12]). Since the
Android language is Java, only the library changes, it might be in
principle possible to apply those analyzers to Android source code
as well. However, as we show in the next sections, there are new
language features, such as XML inflation, that are not understood
by those tools and that affect the same construction of the control
flow graph of the program, usually performed through a type infer-
ence analysis known as class analysis [20]; there are many new
kinds of bugs in Android code, because of the way the library is
used, that are not typical of Java. Hence, either a static analyzer
assumes that those features do not exist and those bugs do not oc-
cur (unsoundness) or must deal with them, possibly in a sound
way. We think that the solutions that we highlight in this paper
can be applied to those static analyzers as well, since they are
not limited to our specific static analyzer of choice.

The rest of this paper is organized as follows. Section 2 justifies
the difficulties of the static analysis of Android programs. Section 3
introduces the Android concepts relevant to this paper. Section 4
presents the more relevant static analyses that we performed on
Android code. Sections 5–7 describe how we improved Julia to
work on Android. In particular, Section 5 discusses the construc-
tion of a sound control-flow graph through class analysis, in the
presence of XML inflation. Section 8 presents experimental results
over many non-trivial Android programs from the standard Google
distribution and from larger open-source projects; it shows that
Julia found some actual bugs in those programs. Section 9 con-
cludes the paper. This article is an extended version of a shorter
conference paper presented at CADE in 2011 [22]. The full experi-
mental evaluation of Section 8 does not appear in [22]. Moreover,
Sections 4–6 provide a deeper presentation of the way we ex-
tended Julia, compared to the corresponding sections of [22].

Julia is a commercial product (http://www.juliasoft.com) that
can be freely used through a web interface available from the
web site of the company, whose power is limited by a time-out
and a maximal size of analysis. Fausto Spoto is the chairman of
the company, that he established in November 2010. He is also
the main developer of the Julia software. Étienne Payet is currently
an associate professor in Reunion (France). He is not a member of
Julia Srl but he regularly collaborates with Fausto Spoto on scien-
tific matters.

2. Challenges in the static analysis of Android

The analysis of Android programs is non-trivial since we must
consider some specific features of Android, both for correctness
and precision of analysis.

First of all, Julia analyzes Java bytecode while Android applica-
tions are shipped in Dalvik bytecode. There are translators from
Dalvik to Java bytecode (such as undx [24] and dex2jar [8]). But
Android applications developed inside the Eclipse IDE [9] can al-
ways be exported in jar format, that is, in Java bytecode. Eclipse is
the standard development environment for Android at the moment,
hence we have preferred to generate the jar files from Eclipse.

Another problem is that Julia starts the analysis of a program
from its main method while Android programs start from many
event handlers. This is also a problem for some event-based Java
programs, such as Swing programs using the actionPerformed

event handlers. This is much more problematic for Android code,
where the whole program works through event handlers that are
often called through reflection, so that they might actually look like
dead code to a static analyzer that does not understand reflection.
Hence, we had to modify Julia so that it starts the analysis from all
such handlers, considering them as potentially concurrent entry

É. Payet, F. Spoto / Information and Software Technology 54 (2012) 1192–1201 1193

http://www.juliasoft.com

Download English Version:

https://daneshyari.com/en/article/550699

Download Persian Version:

https://daneshyari.com/article/550699

Daneshyari.com

https://daneshyari.com/en/article/550699
https://daneshyari.com/article/550699
https://daneshyari.com

