
A methodology to assess the impact of design patterns on software quality

Apostolos Ampatzoglou a,⇑, Georgia Frantzeskou b, Ioannis Stamelos a

a Department of Informatics, Aristotle University, Thessaloniki, Greece
b Information and Communication Systems Engineering Department, University of the Aegean, Samos, Greece

a r t i c l e i n f o

Article history:
Received 8 June 2011
Received in revised form 24 October 2011
Accepted 29 October 2011
Available online 4 November 2011

Keywords:
Structural quality
Design patterns
Object-oriented metrics
Quality

a b s t r a c t

Context: Software quality is considered to be one of the most important concerns of software production
teams. Additionally, design patterns are documented solutions to common design problems that are
expected to enhance software quality. Until now, the results on the effect of design patterns on software
quality are controversial.
Aims: This study aims to propose a methodology for comparing design patterns to alternative designs
with an analytical method. Additionally, the study illustrates the methodology by comparing three design
patterns with two alternative solutions, with respect to several quality attributes.
Method: The paper introduces a theoretical/analytical methodology to compare sets of ‘‘canonical’’ solu-
tions to design problems. The study is theoretical in the sense that the solutions are disconnected from
real systems, even though they stem from concrete problems. The study is analytical in the sense that the
solutions are compared based on their possible numbers of classes and on equations representing the val-
ues of the various structural quality attributes in function of these numbers of classes. The exploratory
designs have been produced by studying the literature, by investigating open-source projects and by
using design patterns. In addition to that, we have created a tool that helps practitioners in choosing
the optimal design solution, according to their special needs.
Results: The results of our research suggest that the decision of applying a design pattern is usually a
trade-off, because patterns are not universally good or bad. Patterns typically improve certain aspects
of software quality, while they might weaken some other.
Conclusions: Concluding the proposed methodology is applicable for comparing patterns and alternative
designs, and highlights existing threshold that when surpassed the design pattern is getting more or less
beneficial than the alternative design. More specifically, the identification of such thresholds can become
very useful for decision making during system design and refactoring.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Object oriented design patterns have been introduced in mid
1990s as a catalog of common solutions to common design prob-
lems, and are considered as standard of ‘‘good’’ software designs
[31]. The notion of patterns was firstly introduced by Alexander
et al. [2] in the field of architecture. Later the notion of patterns
has been transformed in order to fit software design by Gamma,
Helm, Johnson and Vlissides (GoF) [31]. The authors cataloged 23
design patterns, classified according to two criteria. The first, i.e.
purpose, represents the motivation of the pattern. Under this scope
patterns are divided into creational, structural and behavioral pat-
terns. The second criterion, i.e. scope, defines whether the pattern
is applied on object or class level. In [31], the authors suggest that

using specific software design solutions, i.e. design patterns, pro-
vide easier maintainability and reusability, more understandable
implementation and more flexible design. At this point it is neces-
sary to clarify GoF are not the first or the only design patterns in
software literature. Some other well known patterns are architec-
tural patterns, computational patterns, game design patterns, etc.
In recent years, many researchers have attempted to evaluate the
effect of GoF design patterns on software quality. Reviewing the lit-
erature on the effects of design pattern application on software
quality provides controversial results. Until now, researchers at-
tempted to investigate the outcome of design patterns with respect
to software quality through empirical methods, i.e. case studies,
surveys and experiments, but safe conclusions cannot be drawn
since the results lead to different directions. As mentioned in
[37,39,53,59,69], design patterns propose elaborate design solu-
tions to common design problems that can be implemented with
simpler solutions as well.

In this paper we propose a methodology for comparing pattern
designs. The proposed method is analytical in the sense that

0950-5849/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2011.10.006

⇑ Corresponding author.
E-mail addresses: apamp@csd.auth.gr (A. Ampatzoglou), gfran@aegean.gr

(G. Frantzeskou), stamelos@csd.auth.gr (I. Stamelos).

Information and Software Technology 54 (2012) 331–346

Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://dx.doi.org/10.1016/j.infsof.2011.10.006
mailto:apamp@csd.auth.gr
mailto:gfran@aegean.gr
mailto:stamelos@csd.auth.gr
http://dx.doi.org/10.1016/j.infsof.2011.10.006
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


system comparison is not performed on specific system instances,
but on design motifs that can describe every possible instance of a
system during its extension. The methodology is generic so that it
can be applied for comparing design alternatives that describe
equivalent functionality and have specified axes of change. The
proposed method attempts to formulate several quality attributes
as functions of functionality addition on multiple, equivalent solu-
tions to a design problem. Then the functions are compared so as to
identify cut-off points during system maintenance when one solu-
tion gets better or worse than the other. In this study we illustrate
the applicability of the methodology by employing it for comparing
GoF design patterns to equivalent adhoc solutions. In the next sec-
tion, we present background information on design patterns. In
Section 3, the methodology is presented and in Section 4, three
exploratory cases are demonstrated. A discussion on the methodol-
ogy is presented in Section 5. Conclusions, threats to validity and
future work are presented by the end of the paper.

2. Related work

In this section of the paper, previous scientific research related
to design patterns is presented. More specifically, the section is
organized into paragraphs concerning indications on pattern iden-
tification according to metric scores, qualitative evaluation of
pattern employment, quantitative evaluation of pattern employ-
ment, discussion on pattern application and class change prone-
ness, results of controlled experiments on the comparison of
design pattern application versus simpler solutions with respect
to code maintainability, research on pattern formalization, system-
atic pattern selection and finally the use of metrics for measuring
design structures.

2.1. Metrics as indicators of pattern existence

Firstly, in several papers [5,32,33,53] it is implied that object
oriented software metrics can provide indications on the neces-
sity or emergence of specific design patterns. In [5], the authors
compute several metrics (number of public, private and pro-
tected attributes, number of public, private and protected opera-
tions, number of associations, aggregations and inheritance, total
number of attributes, methods and relations) so as to get indica-
tions on the existence of five structural patterns (Adapter, Proxy,
Composite, Bridge and Decorator). Empirical results on the
methodology show that software metrics are essential in order
to reduce the problem search space and therefore enhance the
proposed design pattern detection algorithm. In [53], the authors
attempt to introduce some metrics for conditional statements
and inheritance trees so as to provide indications for the neces-
sity of applying design patterns, in a low quality design, through
refactoring. The proposed methodology, apart from identifying
the need for a pattern in a specific set of classes, provides
suggestions concerning the pattern that should be applied for
solving the problem. Gueheneuc et al. [32], propose a methodol-
ogy on identifying design motif roles through the use of object-
oriented metrics. The suggested fingerprints are ranges of metric
scores that imply the existence of design motif role. The authors
have chosen to use size, cohesion and coupling metrics, while
the patterns under consideration are Abstract Factory, Adapter,
Builder, Command, Composite, Decorator, Factory Method, Itera-
tor, Observer, Prototype, Singleton, State, Strategy, Template
Method and Visitor. In [33] the authors improve their identifica-
tion process by combining a structural and a numerical
approach. This fact leads to the identification of both complete
and incomplete pattern instances, and the reduction of false po-
sitive results.

2.2. Qualitative evaluation of design patterns

Additionally, several studies attempted to qualitatively evaluate
the effects of object-oriented design patterns on software quality.
According to McNatt and Bieman [55], the authors claim that pat-
terns should be considered as structural units and therefore issues
such as cohesion and coupling between the patterns should be
examined. More specifically, the couplings between patterns are
characterized as ‘‘loose’’ and as ‘‘tight’’ and their benefits and costs
with respect to maintainability, factorability and reusability are
being examined. Although the paper introduces several coupling
types, namely intersection, composite and embedded, the way that
they are demarcated is not clear. Specifically, there is a default cou-
pling category, i.e. intersection, and any type of coupling that does
not fit any other group is classified in the default category. In [75],
the author presents an industrial case study, where inappropriate
pattern application has led to severe maintainability problems.
The reasons of inappropriately using design patterns have been
classified into two categories, i.e. (1) software developers have
not understood the rationale behind the patterns that they have
employed and (2) the patterns that have been employed have
not met project requirements. Additionally, the paper highlights
the need for documenting pattern usage and the fact that pattern
removal is extremely costly. In [42], the authors investigate the
correlation among the quality of the class and whether the class
play any roles in a design pattern instance. The results suggest that
there are several differences in quality characteristics of classes
that participate in patterns.

2.3. Quantitative evaluation of design patterns

Furthermore, regarding quantitative evaluation of design pat-
tern application, in [39], the author attempts to demonstrate the
effect of three design patterns (Mediator, Bridge and Visitor) on
metric scores of three different categories (coupling, inheritance
and size). According to the paper, there are several metric thresh-
olds that, when surpassed, the pattern application is beneficial. The
study’s methodology is solid since it is based on pattern definitions
and mathematical equations, but it deals with only one metric per
pattern. Additionally, in [38], the authors have investigated the ef-
fect of the patterns on one quality attribute, i.e. the most obvious
quality attribute that the pattern has effect on. The selection of
the quality attribute has been based on the pattern’s non func-
tional requirements, whereas the selection of the metric has been
based on [8]. The drawback of this research is that it does not take
into account possible trade-offs that pattern usage induces. For
example, when a pattern is employed, the coupling of the system
may decrease, but as a side effect the size may increase. If a quality
attribute is related to size and coupling, drawing a conclusion that
this attribute is enhanced because of the decrease in coupling is
not safe.

In [4], the authors attempt to investigate the effect of design
pattern application in game development through a case study.
The results of the case study are both qualitative and quantitative,
but the domain of the research is limited to games and therefore
results cannot be generalized. The patterns under study are Bridge
and Strategy, whereas the considered metric categories are size,
complexity, coupling and cohesion. The results of the case study
suggest that pattern application enhance cohesion, coupling and
complexity metrics, but as a side effect the size metrics increase.
In [41], Khomh et al. performed a survey with professional soft-
ware engineers. The results of the empirical study suggest that de-
sign patterns do not always impact software quality positively.
More specifically, the negatively influenced quality issues are sug-
gested to be simplicity, learnability and understandability. How-
ever, as it is referenced in the paper, marginal results (e.g.

332 A. Ampatzoglou et al. / Information and Software Technology 54 (2012) 331–346



Download English Version:

https://daneshyari.com/en/article/550708

Download Persian Version:

https://daneshyari.com/article/550708

Daneshyari.com

https://daneshyari.com/en/article/550708
https://daneshyari.com/article/550708
https://daneshyari.com

