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Abstract

Software clustering algorithms presented in the literature rarely incorporate in the clustering process dynamic information, such as the
number of function invocations during runtime. Moreover, the structure of a software system is often multi-layered, while existing clus-
tering algorithms often create flat system decompositions.

This paper presents a software clustering algorithm called MULICsoft that incorporates in the clustering process both static and
dynamic information. MULICsoft produces layered clusters with the core elements of each cluster assigned to the top layer. We present
experimental results of applying MULICsoft to a large open-source system. Comparison with existing software clustering algorithms
indicates that MULICsoft is able to produce decompositions that are close to those created by system experts.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Reverse engineering is the process of analyzing a system’s
internal elements and its external behavior and creating a
structural view of the system. Automatic construction of a
structural view of a large legacy system can significantly
facilitate the developers’ understanding of how the system
works. In legacy systems, the original source code is often
the only available source of information about the system
and it is very time consuming to study.

Software clustering techniques aim to decompose a soft-
ware system into meaningful subsystems, to help new
developers understand the system. Clustering is applied
to large software systems in order to partition the source
files of the system into clusters, such that files containing
source code with similar functionality are placed in the
same cluster, while files in different clusters contain source
code that performs dissimilar functions. Software cluster-

ing can be done automatically or manually. Automatic clus-
tering of a large software system using a clustering tool is
especially useful in the absence of experts or accurate
design documentation. It is desirable to have a software
clustering tool that can consider both static and dynamic
system information. Automatic clustering techniques gen-
erally employ certain criteria (i.e., low coupling and high
cohesion) in order to decompose a software system into
subsystems [13,12,17]. Manual decomposition of the sys-
tem is done by software engineers. However, it is time con-
suming and it requires full knowledge of the system.

We propose the MULICsoft software clustering algo-
rithm that is based on the MULIC categorical clustering
algorithm that is described in [2]. MULICsoft differs from
MULIC in that it incorporates both static and dynamic
information (i.e., the number of function calls during run-
time) in the software clustering process. MULICsoft handles
dynamic information by associating weights with file depen-
dencies and incorporating the weights in the clustering pro-
cess through special similarity metrics. We showed that
MULIC clustering results are of higher quality than those
of other categorical clustering algorithms, such as k-Modes,
ROCK, AutoClass, CLOPE and others [2]. Characteristics
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of MULIC and MULICsoft include: a. The algorithm does
not sacrifice the quality of the resulting clusters for the num-
ber of clusters desired. Instead, it produces as many clusters
as there naturally exist in the data set. b. Each cluster consists
of layers formed gradually through iterations, by relaxing
the similarity criterion for inserting objects (files) in layers
of a cluster at different iterations.

Section 2 gives an overview of previous software cluster-
ing tools. Section 3 describes the formulation of the input
data for our clustering approach. Section 4 describes the
MULICsoft clustering algorithm. Section 5 describes
experimental results on the Mozilla system. Section 6 dis-
cusses inputting additional data to MULICsoft. Section 7
discusses evaluation of the results using an alternative mea-
sure. Section 8 discusses the runtime performance. Finally,
Section 9 concludes and discusses future work.

2. Related work

Several clustering algorithms for software have been pre-
sented in the literature [3,5,6,9,11,12,14,15,17,20]. Some of
the existing software clustering tools, such as LIMBO [3],
consider dynamic information (i.e., the number of function
calls during runtime) in the clustering process, while others,
such as Bunch [12] and ACDC [17], produce clusters with a
nested structure. MULICsoft both considers dynamic
information and produces clusters with a layered structure.

In this section, we describe three algorithms: Bunch [12],
ACDC [17] and LIMBO [3,4]. In Section 5, we will com-
pare our proposed algorithm to these established software
clustering algorithms.

Bunch is a clustering tool intended to aid the software
developer and maintainer in understanding, verifying and
maintaining a source code base [12]. The input to Bunch
is a module dependency graph (MDG). Fig. 1 shows an
MDG graph. Bunch views the clustering problem as trying
to find a good partition of an MDG graph. Bunch defines a
‘‘good partition’’ as a partition where highly interdepen-
dent modules are grouped in the same cluster (representing
subsystems) and independent modules are assigned to sep-
arate clusters. Fig. 1b shows a ‘‘good’’ partitioning of
Fig. 1a. Finding a good graph partition involves systemat-
ically navigating through a very large search space of all
possible partitions for that graph. Bunch treats graph par-
titioning (clustering) as an optimization problem. The goal
of the optimization is to maximize the value of an objective
function, called modularization quality (MQ) [12].

ACDC works in a different way from other algorithms.
Most software clustering algorithms identify clusters by
utilizing criteria such as the maximization of cohesion,
the minimization of coupling, or some combination of
the two. ACDC performs the task of clustering in two stag-
es. In the first stage, it creates a skeleton of the final decom-
position by identifying subsystems that resemble
established subsystem patterns, such as the body-header
pattern and the subgraph dominator pattern [17]. Depend-
ing on the pattern used the subsystems are given appropri-
ate names. In the second stage, ACDC completes the
decomposition by using an extended version of a technique
known as Orphan Adoption [19]. Orphan Adoption is an
incremental clustering technique based on the assumption
that the existing structure is well established. It attempts
to place each newly introduced resource (called an orphan)
in the subsystem that seems ‘‘more appropriate’’. This is
usually a subsystem that has a larger amount of connectiv-
ity to the orphan than any other subsystem.

LIMBO is introduced in [4] as a scalable hierarchical
categorical clustering algorithm that builds on the Informa-

tion Bottleneck (IB) framework for quantifying the relevant
information preserved when clustering. LIMBO has been
successfully applied to the software clustering problem
[3]. LIMBO’s goal is to create clusters whose features con-
tain as much information as possible about the features of
their contents. LIMBO considers weights representing
dynamic dependencies in the software clustering process.

3. Description of data sets

Static information on a software system represents
dependencies between the objects to be clustered. In our
case, the objects to be clustered are source files, while the
dependencies are procedure calls and variable references.
Static information on software systems is categorical,
meaning that the objects have attribute values that are tak-
en from a set of discrete values and the values have no spec-
ified ordering. We represent static information as a
categorical data set by creating an n · n matrix M, where
n is the number of files. Each row of M represents a file i

of the software system. The categorical attribute value
(CA) in cell (i, j) of M is ‘0’ or ‘1’, where ‘1’ represents that
file i calls or references file j and ‘0’ represents that file i

does not call or reference file j.
Dynamic information on a software system contains the

results of a profiling of the execution of the system, repre-
senting how many times each file called procedures in other
files during runtime. We represent dynamic information by
associating a weight with each CA in the matrix, in the
range 0.0–1.0, where 1.0 represents that file i called file j

the maximum number of times during the runtime and
0.0 represents that file i did not call file j. Fig. 2 shows an
example of a software data set in the form of a matrix.

The weights were derived by normalizing the number of
procedure calls during an execution profiling, by dividing
all numbers of calls in a column by the maximum numberFig. 1. (a and b) An MDG graph and its partition of maximum MQ [12].
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