Available online at www.sciencedirect.com

ScienceDirect

INFORMATION
AND
SOFTWARE
TECHNOLOGY

e voSellas
ELSEVIER Information and Software Technology 49 (2007) 292-307

www.elsevier.com/locate/infsof

An infrastructure to support interoperability in reverse engineering

Nicholas A. Kraft ?, Brian A. Malloy **, James F. Power ®

4 Department of Computer Science, Clemson University, Clemson, SC, USA
b Department of Computer Science, National University of Ireland, Maynooth, Co. Kildare, Ireland

Received 6 July 2006; accepted 25 October 2006
Available online 4 January 2007

Abstract

The reverse engineering community has recognized the importance of interoperability, the cooperation of two or more systems to
enable the exchange and utilization of data, and has noted that the current lack of interoperability is a contributing factor to the lack of
adoption of available infrastructures. To address the problems of interoperability and reproducing previous results, we present an infra-
structure that supports interoperability among reverse engineering tools and applications. We present the design of our infrastructure,
including the hierarchy of schemas that captures the interactions among graph structures. We also develop and utilize our implementa-
tion, which is designed using a GXL-based pipe-filter architecture, to perform a case study that demonstrates the feasibility of our infra-

structure.
© 2007 Published by Elsevier B.V.

Keywords: Reverse engineering; Data interoperability; Graph-based tools; Tool interoperability; GXL

1. Introduction

In reverse engineering, interoperability is the coopera-
tion of two or more systems to enable the exchange and uti-
lization of data [27]. The reverse engineering community
has recognized the importance of interoperability among
tools [9], as well as the difficulty in facilitating interoperabil-
ity among these tools [2,3,6,12,19,34,43]. In their roadmap
for reverse engineering, Miiller et al. identify the lack of
adoption of infrastructures as one of the biggest challenges
to increasing the interoperability of data, so that the effec-
tiveness of reverse engineering approaches hinges on
addressing this challenge [44]. An infrastructure is a set of
interconnected structural elements, such as tools and sche-
mas, that provide a framework for supporting features and
facilities, such as interoperability and reuse. The lack of
interoperability among reverse engineering tools and other
software utilities has been highlighted as a contributory

* Corresponding author.
E-mail addresses: nkraft@cs.clemson.edu (N.A. Kraft), malloy
@cs.clemson.edu (B.A. Malloy), jpower@cs.nuim.ie (J.F. Power).

0950-5849/S - see front matter © 2007 Published by Elsevier B.V.
doi:10.1016/5.infsof.2006.10.014

factor to the lack of adoption of available infrastructures
[44].

The issues involved in promoting interoperability among
reverse engineering tools and applications have been dis-
cussed at the Dagstuhl Seminar on Interoperability of Reen-
gineering Tools [7]. At the seminar, the participants
identified three levels at which interoperability should be
applied: low-level syntax, middle-level graph structures,
and high-level architectures. The importance of facilitating
interoperability is becoming increasingly recognized for its
importance in permitting reuse of reverse engineering arti-
facts, as well as enabling the reproduction of results from
previous scientific research.

The two important activities involved in most research
endeavors entail the development of an approach that is an
improvement on existing approaches and then conducting
experiments to show that the new approach is an improve-
ment over existing approaches. To evaluate the new
approach, the researcher is typically required to implement
at least one previously developed technique as an unbiased
basis for comparison with the newly developed technique.
However, even after the previously developed technique is
implemented, the researcher is frequently unsure of the

mailto: nkraft@cs.clemson.edu
mailto: nkraft@cs.clemson.edu
mailto: malloy@cs.clemson.edu
mailto: malloy@cs.clemson.edu
mailto: malloy@cs.clemson.edu
mailto: jpower@cs.nuim.ie
mailto: jpower@cs.nuim.ie

N.A. Kraft et al. | Information and Software Technology 49 (2007) 292-307 293

correctness of the implementation or the correctness of the
generated results. Thus, comparison of competing
approaches is difficult and all too frequently impossible.
For example, researchers in language design and implemen-
tation have reported considerable difficulty in replicating
results in generating call graphs and points-to-analysis,
even for C programs [5,46].

To address the problems of interoperability and repro-
ducing previous results, we presented an infrastructure that
supports interoperability among reverse engineering tools
and applications [35]. In this paper, we expand on the infra-
structure in several important directions. We develop and
extend a schema hierarchy that is central to our approach,
detail the interactions among instances of the schemas, and
illustrate several of the schemas. In addition, we describe
our implementation of the essential components of the
infrastructure, including a linking process for unifying
instances of an API for all translation units in a C++ pro-
gram, and present the results of a case study for our infra-
structure that includes ten popular open source
applications and libraries as a test suite. As part of our
study, we apply XSLT style sheets to GXL instance graphs.
Our implementation of the infrastructure, as well as GXL
versions of the schemas in the hierarchy and our XSLT
style sheets, are available in our web repository [47].

The contribution of our work is the design and imple-
mentation of our infrastructure to support interoperability,
as well as a case study that demonstrates the feasibility of
our infrastructure. The design of our infrastructure includes
a schema hierarchy and details of the interactions among
the schemas. The implementation of our infrastructure
includes a collection of tools that communicate via a GXL-
based pipe-filter architecture. In particular, we provide an
application programmers interface (API) and a set of tools
that leverage the API to perform reverse engineering tasks,
including: construction of graphical program representa-
tions [35,33], computation of metrics [28], and static analy-
sis [21]. Thus, our infrastructure operates at levels one and
two as specified by Sim [9].

In Section 2 we describe previous research that relates to
our infrastructure. In Section 3 we provide details about the
infrastructure, including our hierarchy of canonical sche-
mas. In Section 4 we present g*re, our implementation of
the infrastructure, and describe the instantiation and link-
ing processes for gdapi. In Section 5 we list results of a case
study that investigates the feasibility of our infrastructure
using 10 open-source applications and libraries as a test
suite. Finally, in Section 6 we draw conclusions and
describe future work.

2. Related work

In this section we describe the work that relates to the
design and implementation of our infrastructure. In partic-
ular, we describe research on infrastructures for reverse
engineering, evaluating reverse engineering tools, and link-
ing in reverse engineering tools.

2.1. Infrastructures for reverse engineering

One of the earliest approaches to providing a general
framework for interoperability is the ECMA Reference
Model, the “Toaster Model”, which outlines the functional-
ity required to support a tool integration process [48]. The
dimensions of functionality addressed by the model
include: data integration, provided by the repository man-
ager; control integration, provided by the subsystem inter-
action manager; presentation integration, provided by the
user interaction manager; and process integration, pro-
vided by the development manager.

One of the earliest approaches to a reverse engineering
infrastructure is the LSME system by Murphy and Notkin
[45]. This system is based on lexical analysis and specifically
identifies the ability to add additional source languages and
extractors as central to the approach. This flexibility is
demonstrated by applying the approach to extracting
source models for ANSI C, CLOS, Eiffel, Modula 3 and
TCL.

Kullbach et al. present the EER/GRAL approach to
graph-based conceptual modeling of multi-lingual systems
[36]. In this approach, models to represent information
from a single language are built and then integrated into a
unified model. A graph query language is available to per-
form queries on the unified model.

Dali is a collection of various tools in the form of a
workbench for collecting and manipulating architectural
information [31]. The Dali workbench was designed to be
open, so that new tools could be easily integrated, and light-
weight, so that such integration would not unnecessarily
impact unrelated parts of the workbench. Kazman et al.
identify an extraction phase, encompassing both parsing
and profiling, accumulating information in a repository,
which then feeds visualization and analysis phases. They
use an SQL database for primary model storage, but then
use application specific file formats to facilitate interchange
between tools.

The Dali architecture is echoed by Salah and Mancorid-
ids in their software comprehension environment, which has
a three-layer architecture composed of a data gathering
subsystem, a repository subsystem, and an analysis and
visualization subsystem [51]. Their environment supports
both static and dynamic analysis of Java and C++ pro-
grams, and information can be accessed using either SQL
or a specialized higher level query language.

Finnigan et al. describe a Software Bookshelf, that was
originally designed to support converting PL/I source code
to C++ [13]. Their information repository, describing the
content of the bookshelf, is accessed through a web server
using object-oriented database technology. An implementa-
tion of these ideas as the Portable Bookshelf (PBS) is based
around a toolkit that includes a fact extractor, manipulator,
and layout tools. This “pipeline philosophy” has since
evolved into the SWAG Kit and the LDX/BFX pipeline,
each emphasizing collections of stand-alone tools commu-
nicating only via well-defined inputs and outputs [22].

Download English Version:

https://daneshyari.com/en/article/550748

Download Persian Version:

https://daneshyari.com/article/550748

Daneshyari.com

https://daneshyari.com/en/article/550748
https://daneshyari.com/article/550748
https://daneshyari.com/

