Available online at www.sciencedirect.com

ScienceDirect

INFORMATION
AND
SOFTWARE
TECHNOLOGY

www.elsevier.com/locate/infsof

ELSEVIER Information and Software Technology 49 (2007) 81-98

Reverse-engineering 1-n associations from Java bytecode
using alias analysis

Yoohoon Kang *, Chanjin Park, Chisu Wu

School of Computer Science and Engineering, Seoul National University, South Korea

Received 27 April 2005; received in revised form 15 February 2006; accepted 22 February 2006
Available online 5 April 2006

Abstract

1-n associations are design language constructs that represent one-to-many structural invariants for objects. To implement 1-n asso-
ciations, container classes, such as Vector in Java, are frequently used as programming language constructs. Many of the current CASE
tools fail to reverse-engineer 1-n associations that have been implemented via containers because sophisticated analyses are required to
infer the type of elements collected in containers. This paper presents a new approach to reverse-engineering 1-n associations from Java
bytecode based on alias analysis. In our approach, 1-n associations are inferred by examining the abstract heap structure that is con-
structed by applying an alias analysis on inter-variable relationships extracted from assignments and method invocations of containers.
Our approach handles container alias problem that has been neglected by previous techniques by approximating the relationships
between containers and elements at the object level rather than analyzing only the bytecode. Our prototype implementation was used
with a suite of well-known Java programs. Most of the 1-n associations were successfully reverse-engineered from hundreds of class files

in less than 1 minute.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Reverse-engineering; Class diagram; Program understanding; Alias analysis; Static program analysis; Type inference

1. Introduction

Reverse-engineered design models are considered useful
in software development. They are useful in guiding main-
tainers to gain an understanding of the system of interest
and in allowing comparisons to be made with existing
design models for checking design code traceability or
round tripping. Most CASE tools support reverse-engi-
neering facilities, an indication of just how useful this tech-
nique has become.

One of the important challenges facing the object-orient-
ed reverse-engineering community is the inference of struc-
tural invariants for the objects that capture the problem
space [2]. With the rise of Model-Driven-Architecture [17],
it is becoming essential to extract such design knowledge

* Corresponding author. Tel.: +82 2 874 4165.
E-mail addresses: rmaker@selab.snu.ac.kr (Y. Kang), cjpark@selab.
snu.ac.kr (C. Park), wuchisu@selab.snu.ac.kr (C. Wu).

0950-5849/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2006.02.004

for later transformations into other implementation-
specific models.

A current study [1] on the state-of-the-art of CASE tools
emphasizes that many available CASE tools fail to infer
“one-to-many”’ structural invariants. The relationship
between a car and its wheels is a typical example of such
an invariant. The inference is difficult because one-to-many
structural invariants may not be directly reflected by the
code. Due to the gap in translation that exists between
design and implementation [5], sophisticated code-level
analyses are required to identify helpful clues for inferring
these invariants.

One-to-many structural invariants are directly repre-
sented by design language constructs such as 1-n associa-
tions. For example, as noted before, a 1-n association
represents the invariants for a car and its wheels. There-
fore, one-to-many structural invariants can definitely be
inferred by reverse-engineering 1-n associations instead.

On the other hand, during development, 1-n associa-
tions can be implemented in many ways. Container classes


mailto:rmaker@selab.snu.ac.kr
mailto:cjpark@selab. snu.ac.kr
mailto:cjpark@selab. snu.ac.kr
mailto:wuchisu@selab.snu.ac.kr

82 Y. Kang et al. | Information and Software Technology 49 (2007) 81-98

are one of the most frequently used methods. A container,
such as Vector in Java, is simply an object that groups mul-
tiple elements into a single unit [22]. Then, 1-n associations
can be implemented with containers and their elements. In
the case of the car and wheels example, a car may be imple-
mented by using a container that stores wheels as elements.

To reverse-engineer the 1-n associations implemented
with containers, it is essential to infer the concrete type of
the elements stored in the container. This is especially true
since Java supports subtype polymorphism and the elements
in the container have a top-level type of java. lang. Object [18].
Therefore, sophisticated code-level analyses are required to
infer the concrete type of the elements.

Our method is applicable to legacy Java code that does
not support parametric polymorphism and to code that is
based on user-defined, not-templated containers. The old
version of Java code (1.4 or lower) is the primary target
of our method.

Reverse-engineering 1-n associations could provide a
solid foundation for other research. Recovery of design
language constructs (like 1-n associations) is considered
an essential prerequisite of reverse-engineering precise
UML class diagrams [6] and detecting applied design
patterns [15,16]. On the other hand, structural invariants
for problem domain objects that are represented by 1-n
associations play a crucial role in transforming Platform-
Independent-Model to Platform-Specific-Model in Model-
Driven-Architecture research.

Several approaches have been proposed recently to deal
with this problem [3-6]. The predominant technique is the
examination of a container field and the method invoca-
tions of the field. For example, suppose that we have a class
Queue with a Vector field and a method invocation on the
field:

class Queue {
Vector slots = new Vector();
void addSlot(Slot slot) {
slots.addElement(slot);

This would result in a correct I-n association from
Queue to Slot with a role name slots because Queue has
the container (Vector) field named slots and the method
addElement(Slot) is called on the field with a parameter
of type Slot. However, this approach has a drawback; it
does not take into account the “aliases” for the container
field. Aliases are two variables referring to the same object
in the heap [9] and are made by assigning one variable to
another variable. Suppose that the Queue class above has
another Vector field and several assignments have been
added as follows:

class Queue {
Vector slots = new Vector();
Vector p;
void addSlot(Slot slot) {

p = slots;
Vector q = p;
q.addElement(slot);

This may not result in the correct 1-n associations
because ¢ is not a container field. However, variable ¢ is
the alias for both p and slots, so all three variables refer
to the same object in the heap. Without considering the
effect of variable ¢, it is impossible to produce the correct
1-n associations from only the container field slots.

To overcome this drawback, alias analysis can be used
for a more accurate heap-dependence analysis. Since
one-to-many structural invariants can be viewed as proper-
ties of a runtime heap structure [2], it is crucial to analyze
aliases that refer to the same object if reverse-engineering
techniques are to determine the correct 1-n associations.
To assist this alias analysis, our approach produces two
1-n associations from Queue to Slot with role names slots
and p for the above example.

This paper presents a new approach to reverse-engineer-
ing 1-n associations implemented via containers from Java
bytecode based on alias analysis. 1-n associations are
inferred by examining the abstract heap structure that is
a static approximation of the runtime heap structure relat-
ed to containers and their elements. An abstract heap struc-
ture is a graph whose nodes represent approximate objects
that we call a “rep object” and whose edges represent “ref-
erencing relationships™ among the rep objects. Aliases for a
container variable or an element variable are interpreted as
a whole into a rep object. Inserting or extracting the ele-
ment to or from the container is translated into a referenc-
ing relationship between the rep objects referred to by the
container and the element.

Our approach handles the container alias problem that
has been neglected by previous approaches by employing
a novel application of alias analysis. By considering the
effect of aliases for container variables, our approach can
produce more correct 1-n associations.

In addition to the container alias problem, our
approach handles other interesting problems related to
iterators and nested containers [3,4]. Iterators that scan
the collection of elements in a container are also analyzed
to infer the element types of the container. Furthermore,
nested containers are naturally expressed in the abstract
heap structure.

The rest of this paper is organized as follows: Section 2
gives a detailed explanation of the problem that we set out
to solve. Section 3 shows how the types of the elements
stored in a container are inferred using alias analysis.
Section 4 describes our reverse-engineering mechanism in
terms of Java bytecode. Section 5 gives the experimental
results that we obtained by applying our approach to a
suite of Java programs. Section 6 discusses the heuristics
used in our approach and the challenges that remain.
Section 7 describes some related work. Section 8 gives
our conclusions and recommendations for future research.



Download English Version:

https://daneshyari.com/en/article/550757

Download Persian Version:

https://daneshyari.com/article/550757

Daneshyari.com


https://daneshyari.com/en/article/550757
https://daneshyari.com/article/550757
https://daneshyari.com

