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A B S T R A C T

Gene regulatory networks lie at the core of cell function control. In E. coli and S. cerevisiae, the study of gene
regulatory networks has led to the discovery of regulatory mechanisms responsible for the control of cell
growth, differentiation and responses to environmental stimuli. In plants, computational rendering of gene
regulatory networks is gaining momentum, thanks to the recent availability of high-quality genomes and
transcriptomes and development of computational network inference approaches.
Here, we review current techniques, challenges and trends in gene regulatory network inference and high-
light challenges and opportunities for plant science. We provide plant-specific application examples to guide
researchers in selecting methodologies that suit their particular research questions.
Given the interdisciplinary nature of gene regulatory network inference, we tried to cater to both biologists
and computer scientists to help them engage in a dialogue about concepts and caveats in network infer-
ence. Specifically, we discuss problems and opportunities in heterogeneous data integration for eukaryotic
organisms and common caveats to be considered during network model evaluation. This article is part of a
Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and
Dr. Nathan Springer.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Gene regulatory networks are central to all biological processes
of an organism. In their most basic form, they describe the complex
web of transcription factor proteins that bind regulatory sequences
of target genes in order to affect their spatial and temporal expres-
sion [1].

Understanding gene expression regulation has an immediate
impact in biology and medicine as many traits and diseases are
associated with mutations in regulatory sequences or dysfunctional
transcriptional regulators [1]. In agriculture, changes in plant tran-
scriptional regulation shaped modern crops such as maize, rice and
wheat and enabled yield increases [2]. Elucidation of transcriptional
regulatory systems could help improve metabolite production rates
and resilience against environmental stresses [3,4].

Owing to their sessile nature, plants are subject to variations in
their environment that drive adaptation. Yet, how gene-regulatory

� This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms
and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.

* Corresponding authors.
E-mail addresses: michael.banf@gmx.net (M. Banf), srhee@carnegiescience.edu

(S. Rhee).

networks are rewired to control the adapted traits or drive adap-
tation is largely unknown. Despite extensive insights into the core
components of the transcriptional machinery, how specificity is
encoded during the highly dynamic process of transcriptional regu-
lation remains an open question [5].

Given the interdisciplinary nature of the problem, biologists and
computer scientists need to engage in a dialogue to solve the net-
work inference problem.

In this review, we aim to (i) introduce the basic concepts and
procedures used for gene expression based regulatory network infer-
ence, which are borrowed from several disciplines including statis-
tics, information theory, graph theory and machine learning; (ii) dis-
cuss limitations of network inference based only on transcriptional
datasets; (iii) present data types and strategies used for integra-
tive network inference and causal link predictions; and (iv) describe
caveats and solutions for the evaluation and selection of statistically
and biologically relevant regulatory interactions.

2. Methods for gene regulatory network inference from
expression data

Gene expression data generated by high-throughput technologies
such as microarray or RNAseq still serve as one of the main sources
for the development of gene regulatory networks. Therefore, we
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start our review by highlighting some of the main concepts, meth-
ods and limitations in inferring regulatory networks from different
types of gene expression data. For an in-depth comparison of the
state-of-the-art network inference methods using expression data,
we refer the reader to [6–9]. For an overview on gene expression nor-
malization, filtering and pre-processing steps for network inference,
see [10,11].

2.1. Correlation and information theoretic approaches

Approaches within this category employ statistical analyses of
dependencies between expression patterns. The most basic models,
called co-expression networks, exploit correlations between expres-
sion profiles of genes [12]. A popular correlation measure is Pearson’s
correlation coefficient r [10], i.e.

rEi ,Ej
=

cov(Ei, Ej)
s(Ei) • s(Ej)

(1)

Here, Ei, Ej denote gene expression profiles of two genes i, j with
covariance cov(Ei, Ej) and standard deviations s(.). Other correlation
measures include Spearman’s correlation [10] or the more recently
introduced weighted correlation coefficient [13]. More sophisticated
correlation based approaches aim to distinguish direct from indi-
rect, spurious correlations between genes by using partial correla-
tions [14–16].

Information theoretic concepts [17,18] extend correlation to cap-
ture more complex statistical dependencies between expression pat-
terns. This approach led to the development of a specific kind of asso-
ciation network called a relevance network [19]. Relevance networks
define relationships between two genes i, j based on an information
theoretic property, called mutual information [19], based on their
respective gene expression profiles Ei and Ej. Mutual information is
defined as

I(Ei, Ej) =
∑
ei∈Ei

∑
ej∈Ej

p(ei, ej)log
(

p(ei, ej)
p(ei)p(ej)

)
(2)

where p(ei, ej) is the joint probability distribution of ei in Ei and ej in
Ej, and p(ei) and p(ej) denote the marginal probabilities.

Relevance networks are built by first constructing a fully con-
nected graph for all gene pairs using mutual information to weight
each link. Links whose associated weights lie below a certain thresh-
old are removed from the network. The threshold, according to Butte
and Kohane [19], is estimated by first randomizing the expression
data, and then re-computing mutual information values to obtain a
reference null distribution.

Various refinements of this idea have been proposed to discrim-
inate direct from indirect effects [12,17,18,20,21]. The most promi-
nent methods include ARACNE (algorithm for the reconstruction of
accurate cellular networks) [22], CLR (context likelihood of related-
ness) [21], MRNET (minimum redundancy, maximum relevance) [20]
and C3NET (conservative causal core) [17].

The ARACNE algorithm [22] adjusts the construction of a rele-
vance network by applying a constraint known as Data Processing
Inequality to filter indirect interactions. The Data Processing Inequal-
ity states that, if gene i interacts with gene j via gene k, then the fol-
lowing inequality holds with respect to their corresponding mutual
information values: I(Ei, Ej) ≤ min(I(Ei, Ek), I(Ek, Ej)), i.e. the smallest
of the mutual information scores I( • ) within this inequality indicates
an indirect regulatory interaction [22]. As a consequence, ARACNE
evaluates all possible gene triplets and prunes individual (indirect)
interactions within each triplet, if the Data Processing Inequality is
violated beyond a certain tolerance threshold.

The CLR algorithm [21] first estimates the pair-wise mutual infor-
mation values for all gene pairs. Then, it estimates the statistical
likelihood of each mutual information value Iij for a particular pair
of genes (i, j) by comparing this mutual information value to a
background distribution. For each gene pair (i, j), two z-scores are
obtained, one for gene i and one for gene j, by comparing the mutual
information value Iij with gene-specific distributions, pi and pj. Here
lies CLR’s major advantage over the relevance network approach by
Butte and Kohan [19] or ARACNE, as individual thresholds can be
established by considering an individual background for each pair
of genes. This is in contrast to relevance networks or the ARANCE
approach, which use a global threshold for graph pruning.

The MRNET algorithm [20] incorporates a feature selection
methodology, called Minimum Redundancy Maximum Relevance
(MRMR), to infer interactions between genes. This algorithm first
places each gene as a target gene with all remaining genes as its puta-
tive regulators. The MRMR method is then applied to select the best
subset of regulators.

More recently, C3NET [17] has been proposed. This approach con-
sists of two main steps. First, a relevance network is constructed
and non-significant edges are pruned according to a chosen signif-
icance level. Then, only the most significant link for each gene, i.e.
the highest mutual information value among the neighboring edges,
is selected. This implies that the highest possible number of edges
that can be inferred by C3NET is equal to the number of genes in the
network.

In addition to aforementioned variations of the relevance net-
work approach, concepts such as three-way and conditional mutual
information have been proposed to directly address the problem
of indirect interactions within gene triplets. For instance, the MI3
algorithm [23] uses three-way mutual information for inference,
hypothesizing that gene regulation commonly involves more than
one regulatory gene. Soranzo et al. [12] use only the conditional
mutual information (CMI) to infer regulatory networks between gene
triplets, pruning links that fall below a chosen threshold.

2.1.1. Limitations
In general, co-expression and relevance networks are designed

to help explore co-functionality of genes on a systems level [13]. In
this context, the notion of separating direct from indirect regulatory
effects between genes should not be confused with directionality or
even causality. In general, correlation-based relationships are sym-
metric, i.e. bidirectional, although recent efforts to exploit time-delay
effects using time-course expression data might allow for asymmet-
ric relationships [24–26]. For an in-depth comparison of time-lagged
information-theoretic approaches, see [25].

However, for most of the common approaches within this
group of methodologies, directionalities between genes can only be
assumed if regulator genes are known in advance. As a consequence,
large-scale mining for biologically relevant graph-patterns, such as
feedback or feed-forward loops, should be exercised with caution.

In general, correlations between gene expression profiles are used
as an indicator of co-regulation [27], and a plethora of clustering
approaches has been developed based on that premise [28–32]. Com-
plementing clustering with various gene regulatory network infer-
ence approaches have been proposed to find a more robust method
for identifying condition-specific regulators [31,33]. Advantages and
limitations of these ideas are discussed in [32]

2.1.2. Application examples in plant science
An in-depth tutorial on how to apply co-expression analysis

for plant systems biology is given in [10]. The authors in [10]
not only describe methodologies but also discuss statistical issues
including how normalization of gene expression data can influence
co-expression results. A more recent extensive overview on the con-
struction and application of co-expression networks in plant species
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