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Co-expression networks have been shown to be a powerful tool for inferring a gene's function when little is
known about it. With the advent of next generation sequencing technologies, the construction and analysis of
co-expression networks is now possible in non-model species, including those with agricultural importance.
Here, we review fundamental concepts in the construction and application of co-expression networks with a
focus on agricultural crops.We survey past and current applications of co-expression network analysis in several
agricultural species and provide perspective on important considerations that arise when analyzing network re-
lationships. We conclude with a perspective on future directions and potential challenges of utilizing this pow-
erful approach in crops. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and
Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
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1. Introduction

Despite extremely successful breeding programs substantially
impacting agricultural yield, our understanding of gene function in
most crop species is still limited. For instance, in maize, only ~1% of
genes have functional annotations based on mutant analysis [1]. How-
ever, applications of high throughput, genome sequencing technologies
are generatingdata that is beginning to expose the function of the rest of
the genome. For example, standardized sequencing-based techniques,
such as RNA-Seq, enable the measurement of gene expression for spe-
cific experimental conditions, developmental time points or different
tissues. Surveying transcription across a large number of diverse exper-
iments establishes an expression profile for each gene, which can be ex-
haustively compared to each another, building a network of putative co-
regulatory relationships. Each node represents a gene and each edge
shows themagnitude of co-expression between them, implying a prob-
abilistic, functional relationship [2]. In addition to when and where it is
expressed, these data can help establish a functional context for a gene,
even where little other information exists.

In model species, where gene function can be established through
reverse genetic approaches, co-expression networks have been shown

to be a powerful tool for rapidly predicting potential functional links be-
tween genes. Furthermore, once represented as a network, topological
and structural information shows that these biological networks share
organization properties similar to other naturally occurring networks
such as those seen in power grids, social interactions, and the world
wide web [3]. Borrowing these systems biology based approaches de-
veloped in model species, systematic integration of large-scale whole
genome expression datasets is now an active area of research in crops.
Whole transcriptome sequencing technologies in crop species allow
for a transfer of knowledge from decades of previous research in non-
biological and model systems to build functional networks using co-
expression. This shared domain knowledge allows for the direct appli-
cation of many network based approaches in crop species allowing for
rapid construction of robust, biologically coherent networks. However,
there are unique characteristics of agricultural species that require spe-
cial consideration in the application and interpretation of co-expression
network approaches including high levels of nucleotide diversity, prev-
alent genotype by environment (GxE) interactions, and heterosis [4].
While not all agronomically important traits will be fully explained by
variation in gene expression, the wealth of currently available gene ex-
pression information already available for many species coupled with
the rate at which new expression studies are being performed makes
co-expression analysis a powerful tool for unraveling gene function in
crop species. The impact of these phenomena on interpreting functional
relationships are just beginning to be explored in agricultural species
and pose important considerations for applying co-expression based
techniques.
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In this review, we examine how gene co-expression networks have
been used to unravel gene function, with a focus on agricultural species.
First, we review generalized methods and techniques used to build and
utilize co-expression networks.We then survey different strategies that
previously have been used to examine gene function inferred from co-
expression in several different crop species. Next, we focus on
interpreting and understanding network structure that arises from co-
expression networks built specifically in agricultural species. Finally,
we provide our perspective on emerging applications of co-expression
networks in helping to interpret the vast wealth of functional informa-
tion that is now being generated for agricultural systems.

2. Building co-expression networks

2.1. Measuring co-expression among pairs of genes

Early methods in gene expression analysis discovered that when
genes were hierarchically clustered, genes with similar biological func-
tion generally clustered near each other (Fig. 1A). A gene's pattern of ex-
pression across different samples is informative of its function [5]. The
functional information originally observed in hierarchically clustered
gene expression profiles can also be analyzed through the lens of
pairwise relationships. Where the basic unit in a gene expression
dataset is a gene's expression profile across a diverse set of experiments,
the unit of interest in a gene co-expression network arises from quanti-
fying the relationship among two genes' profiles. A typical approach is
to systematically compare each pair of genes' profiles, representing sim-
ilarity of two genes' profile with a single edge in a network, where the
nodes represent genes and the edges reflect highly similar profiles
(Fig. 1B).

The relationship between two genes' expression profiles can be
measured several different ways [6]. The most widely used similarity
metric used to calculate co-expression is the Pearson correlation

coefficient (PCC), which measures the presence of a linear relationship
between a pair of expression profiles. This similarity metric has an intu-
itive interpretation and is computationally inexpensive to compute,
which may be factors that contribute to its widespread use for co-
expression analyses[2,7–15]. Despite its extensive use, the Pearson cor-
relation coefficient is not optimal for capturing nonlinear relationships,
which possibly leaves meaningful relationships uncovered. Other simi-
larity metrics have been proposed. Non-parametric measures such as
the Spearman and Kendall correlation coefficient are alternatives to
the PCC and can offer the advantage of robustness to outliers [16–18].
Additionally, more complex measures such as mutual Information
(MI) attempt to quantify similaritymore generally as a summary of sta-
tistical dependence, although this comes at the cost of computational ef-
ficiency [19]. Recent comparative studies on similarity metrics shows
that in most cases, linear monotonic relationships capture instances
where co-expression is informative, suggesting that similarity metrics
designed for linear relationships such as PCC are suitable for most gen-
eral purpose network analysis [20]. Highly similar co-expression pat-
terns among sets of genes are often driven by a small subset of
individuals or experiments that are collectively over- or under-
expressed (Fig. 1A). While determining this subset of accessions is not
explicitly handled by common co-expression measures, simultaneous
clustering of accession profiles in an approach called bi-clustering can
help determine which accessions are potentially ‘driving’ patterns of
co-expression [21,22]. Additional reviews on uses and applications of
similarity metrics can be found here [6,20,23,24]. For the remainder of
this review, we focus on the Pearson correlation coefficient as the
basis for measuring co-expression due to its widespread use. However,
most of the concepts discussed apply more generally to networks de-
rived from other metrics.

In addition to how co-expression is quantified between input genes,
different approaches can be used to define the starting sourcewhen ex-
amining co-expression relationships among genes. The simplest

Fig. 1.Gene co-expression network construction and overview schematic. (A) Expression ismeasured for each genewithin a genome to generate an expression profile across a diverse set
of accessions (often tissues, developmental time-points, stress responses or genotypic variation). Genes are ordered, here, based on a hierarchical clustering algorithm to demonstrate the
overall structure captured by the data. (B) Correlative structure can be quantified using a similaritymetric (Pearson correlation coefficient here) applied to each pair of genes (Section 2.1).
Interactions are normalized and thresholded to produce a network and displayed using a ‘node’ and ‘edge’model (Section 2.2.1). Subnetwork structure, such as dense connectivity, relates
back to the original correlation among gene expression profiles captured by variation among the diverse set of accessions. Biological interpretation then relies on understanding why
profiles of genes are co-expressed (Section 2.2). Patterns here are potentially driven by a subset of accessions being over- or under-expressed, collectively.
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