
Information and Software Technology 49 (2007) 55–64

www.elsevier.com/locate/infsof

0950-5849/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2006.08.009

ATERMs for manipulation and exchange of structured data:
It’s all about sharing

Mark G.J. van den Brand a, Paul Klint b,c,¤

a Technical University Eindhoven, Department of Mathematics and Computer Science, The Netherlands
b Centrum voor Wiskunde en Informatica (CWI), Software Engineering Department, University of Amsterdam, Amsterdam, The Netherlands

c Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

Available online 10 October 2006

Abstract

Some data types are so simple that they tend to be reimplemented over and over again. This is certainly true for terms, tree-like data
structures that can represent preWx formulae, syntax trees, intermediate code, and more. We Wrst describe the motivation to introduce
Annotated Terms (ATERMs): unifying several term formats, optimizing storage requirements by introducing maximal subterm sharing,
and providing a language-neutral exchange format. Next, we present a brief overview of the ATERM technology itself and of its wide range
of applications. A discussion of competing technologies and the future of ATERMs concludes the paper.
© 2006 Elsevier B.V. All rights reserved.

Keywords: ATERMs; Trees; Syntax trees; Abstract syntax trees; Maximal subterm sharing; Annotations; Parsing; Term rewriting; Intermediate data format;
Abstract data type; Data exchange; Component-based software; Model checking; Toolbus; ASF+SDF meta-environment; APIGEN; Program generation

1. History and motivation

Some data types are so simple that they tend to be reim-
plemented over and over again. This is not only true for
linked lists and symbol tables but also for terms, tree-like
data structures that can represent preWx formulae, syntax
trees, intermediate code, and more. The explanation is
probably that every project needs slight variations of these
simple data types and that existing parameterization tech-
niques for software components cannot easily accommo-
date this variability.

Generic language technology is one of our research top-
ics and related to this research we have developed an inter-
active development environment for writing language
speciWcations, the ASF+SDF Meta-Environment [35,8].
Terms play an important role in this meta-environment:

they are used to represent source code, parse tables, error
messages, and so forth. When we made an inventory of
term data types in our own software projects related to the
ASF+SDF Meta-Environment, it turned out that we were
using (and maintaining!) six diVerent variants of a term
data type and this provided a strong incentive to look for a
single data type that could be used in all projects.

A Wrst attempt at uniWcation were the TOOLBUS terms
that were introduced as part of the implementation of the
TOOLBUS coordination architecture [3], our component
interconnection technology. TOOLBUS terms introduced the
simple make-and-match paradigm (explained below) for
constructing and decomposing terms. A linear string repre-
sentation was used to exchange terms between components.
The C implementation supports automatic garbage collec-
tion.

Annotated Terms (or ATERMs as described in [11]) intro-
duced several innovations over the original design: maxi-
mal subterm sharing, annotations, a compressed binary
exchange format, and a two-level application programming
interface (API) that enables both simple and eYcient use of

* Corresponding author. Tel.: +31 20 592 4126.
E-mail address: Paul.Klint@cwi.nl (P. Klint).
URLs: www.win.tue.nl/~mvdbrand (M.G.J. van den Brand),

www.cwi.nl/~paulk (P. Klint).

mailto: Paul.Klint@cwi.nl
mailto: Paul.Klint@cwi.nl
www.win.tue.nl/~mvdbrand
www.win.tue.nl/~mvdbrand
www.cwi.nl/~paulk
www.cwi.nl/~paulk

56 M.G.J. van den Brand, P. Klint / Information and Software Technology 49 (2007) 55–64

ATERMs. Mature implementations exist for C and Java and
experimental implementations for, C#, ML, and Haskell.

Although ATERMs were introduced to solve just our own
local problem, the wide acceptance of ATERMs in numerous
projects suggests that this problem was not so local after
all. The purpose of the present paper is to sketch the con-
texts and problem domains in which ATERMs are useful
and to compare them with competing technologies. The
plan of this paper is as follows. In Section 2 we give a quick
introduction to ATERMs and discuss all technology that has
been developed to seamlessly integrate ATERMs in applica-
tions. Next, we give a survey of applications of ATERMs in
Section 3. We complete the paper with a comparison of
ATERMs with other technologies (Section 4) and we specu-
late about their future (Section 5).

2. The ATERM technology

2.1. A quick introduction to ATERMs

The data type of ATERMs is deWned as follows (see [11]
for full details):

• An integer or real constant is an ATERM.
• A function application is an ATERM, e.g., f(a,b).
• A list of zero or more ATERMs is an ATERM, e.g.,

[f(a),1,“abc”].
• A placeholder term containing an ATERM that repre-

sents the type of the placeholder is an ATERM, e.g.,
f(�int�).

• A binary large object (BLOB) containing arbitrary
binary data is an ATERM.

• A list of (label,annotation) pairs may be associated with
each ATERM. Label and annotation are both ATERMs
and can thus contain nested annotations.

ATERMs are constructed under the constraint that all
subterms of all ATERMs in a given universe are maximally
shared. ATERMs thus represent directed acyclic graphs and
should, in fact, have been called “ADags”. As a conse-
quence, all operations on ATERMs are applicative: an
ATERM can be decomposed into its constituent parts, but
those parts can never be replaced. Replacement can only be
achieved by building a new ATERM that contains new val-
ues at the places to be modiWed.

The ATERM API is based on the make-and-match para-
digm:

• make (compose) a new ATERM by providing a pattern
for it and Wlling in the placeholders, in the pattern with
given values.

• match (decompose) an existing ATERM by comparing it
with a pattern and decompose it according to this pat-
tern.

Functions for the input and output of ATERMs (both in
textual and in binary form) are provided. For eYciency rea-

sons also direct access functions for the constituents of
ATERMs such as arguments of applications, elements of
lists, and annotations are provided. As a Wrst example, con-
sider the following code fragment which shows how to
make an ATERM (using the C version):

ATerm t1 D ATmake(“or(true,false)”);

ATerm t2 D ATmake(“and(true, �term�)”, t1);

First, the term or(true,false) is constructed and then
assigned to variable t1. Next, a second term is constructed
using the term pattern “and(true, �term�)”. The value of
t1 is substituted for the placeholder �term� and as a result
the term and(true,or(true,false)) is assigned to t2.
Now let us try to match against this last term:

ATerm t3, t4;

if(ATmatch(t2, “and(�term�,�term�)”, &t3, &t4)) {

ƒ

}

The pattern “and(�term�, �term�)” is matched against
the current value of t2. The match succeeds and the sub-
terms corresponding to the placeholders, respectively true
and or(true,false) are assigned to the variables t3 and
t4. The same example can also be coded using direct access
to the term representation. For instance,

t3 D ATgetArgument(t2,0);

t4 D ATgetArgument(t2,1);

achieves the same eVect as the ATmatch condition.
As these examples show, the physical structure of the

terms being manipulated by this code is explicit in the form
of patterns and indices representing argument positions.
This intimacy between an application and the ATERM rep-
resentation it uses is shown in Fig. 1(a). The code would be
broken by any change of the representation such as renam-
ing function names (e.g., in a Dutch language version and
might be replaced by en), swapping arguments, adding

Fig. 1. Application code uses ATERMs. (a) Application code uses hand-
written code to manipulate ATERMs directly; (b) application uses hand-
written code to manipulate an ASFIX view on ATERMs; (c) the ASFIX view
is deWned in an SDF grammar and the access code is generated by APIGEN,
the application uses this generated code to manipulate the ASFIX view.

a b c

Download English Version:

https://daneshyari.com/en/article/550777

Download Persian Version:

https://daneshyari.com/article/550777

Daneshyari.com

https://daneshyari.com/en/article/550777
https://daneshyari.com/article/550777
https://daneshyari.com

