Available online at www.sciencedirect.com

Y INFORMATION
'+ ScienceDirect

AND
SOFTWARE
TECHNOLOGY

www.elsevier.com/locate/infsof

ELSEVIER Information and Software Technology 48 (2006) 981-992

Extended state identification and verification using a model checker

Christopher Robinson-Mallett **, Peter Liggesmeyer , Tilo Miicke °, Ursula Goltz °
& University of Kaiserslautern, Fraunhofer IESE, Germany
® University of Brunswick, Institute for Programming and Reactive Systems, Germany

Received 7 March 2006; accepted 21 March 2006
Available online 23 May 2006

Abstract

This article presents a method for the application of model checking, i.e., verifying a finite state system against a given temporal spec-
ification, on the problem of generating test inputs. The generated test inputs allow state characterization, i.e., the identification of internal
states of the software under test by observation of the input/output behavior only. A test model is derived semi-automatically from a
given state-based specification and the testing goal is specified in terms of temporal logic. On the basis of these inputs, a model checking
tool performs the testing input generation automatically. In consequence, the complexity of our approach is strongly depending on the
input model, the testing goal, and the model checking algorithm, which is implemented in the used tool. The presented approach can be
adapted with small changes to other model checking tools. It is a capable test generation method, whenever a finite state model of the
software under test exists. Furthermore, it provides a descriptive view on state-based testing, which may be beneficial in other contexts,

e.g., education and program comprehension.
© 2006 Elsevier B.V. All rights reserved.

Keywords: State characterization; Automata-based testing; Conformance testing; Model checking; Test generation; Protocol testing; Checking sequence

generation; Software testing

1. Introduction

Testing is the execution of a piece of software under test
(SUT) for the purpose of fault detection. It is a mandatory
quality assurance technique in each successful software
development project and a frequent task in each program-
mer’s everyday life. The selection of a fault sensitive, repre-
sentative, and economic sample among the vast number of
possible test inputs is after decades of intensive research
still a problem of high relevance. Currently, test design
automation is an important trend in industry and research,
which allows the reduction of human errors and expendi-
tures of time and money at a defined test quality. In this
article, we present a method for the automated generation

* Corresponding author. Tel.: +49 631 6800 2236; fax: +49 631 6300
1499.
E-mail addresses: mallett@iese.fraunhofer.de (C. Robinson-Mallett),
peter.liggesmeyer@iese.fraunhofer.de (P. Liggesmeyer), tmuecke@ips.
cs.tu-bs.de (T. Miicke), goltz@ips.cs.tu-bs.de (U. Goltz).

0950-5849/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2006.03.006

of test inputs on the basis of state-based specifications and
coverage criteria. Furthermore, we aim at the verification
and identification of internal states of the implementation,
which is beneficial whenever black box testing is performed
and observations are restricted to input/output behavior.

In the recent years, Model Checking, i.e., verifying a
finite state system against a given temporal specification
[6], has been established as a powerful static verification
method. The two most prominent approaches to model
checking have been introduced independently by Clarke
and Emerson [5], based on Computational Tree Logic
(CTL), and Quielle and Sifakis [17], based on Linear Tem-
poral Logic (LTL). A detailed overview of both approaches
can be found in [6, pp. 35-49]. In this article, we will con-
centrate on the application of the approach by Clarke and
Emerson a small subset of CTL in order to generate test
inputs from a finite state model of the SUT.

The construction of a checking sequence, also referred to
as machine distinguishing experiment in [11] or machine
identification experiment in [9] and [15], which can be used

mailto:mallett@iese.fraunhofer.de
mailto:peter.liggesmeyer@iese.fraunhofer.de
mailto:tmuecke@ips. cs.tu-bs.de
mailto:tmuecke@ips. cs.tu-bs.de
mailto:goltz@ips.cs.tu-bs.de

982 C. Robinson-Mallett et al. | Information and Software Technology 48 (2006) 981-992

to check conformance of an SUT against a state-based
specification has been under research since the earliest days
of computing [10]. The conformance check is based on the
derivation of the internal states of the SUT from its input/
output behavior. Therefore, a checking sequence is con-
structed from a cover set, e.g., inputs that execute each
transition, and a set of input sequences that can be used
to characterize each current state of the SUT. The con-
struction of cover sets from state-based specifications has
been under research for many years and seems to be well
understood. Recent publication, e.g. [13], of model check-
ing to the problem of generating test inputs on the basis
of coverage criteria bridge the gap between static verifica-
tion and testing of state-based specifications.

Characterization sets: A characterization set is a set of
input sequences, referred to as state characterization
sequences, on a minimal finite state machine (FSM) that pro-
duces different output for each different initial state. In this
context, the initial state is the state in which the software
resides before executing the input sequence. Referring to
the example in Section 6 of this article, a simple form of char-
acterization set consisting only of the input sequence baa
decides each state of the finite state machine in Fig. 2. In this
paper, we focus on the construction of three forms of charac-
terization sets: Distinguishing Sequence (DS) [10,11,15,9],
i.e., the characterization set is a singleton; Unique Input Out-
put Sequences (UIOs), i.c., the characterization set contains
for each state an input sequence that decides it from any
other state of the FSM; and W-sets, i.e., a number of input
sequences as a whole decide each state of the FSM.

In the domain of state characterization problems we
briefly discuss the two most prominent: (1) State Identifica-
tion: The problem is to identify the unknown initial state of
a FSM under test. (2) State Verification: The problem is to
verify that a state machine under test is in a particular state
at a specific stage of the test. Both problems are addressed
with the application of characterization sets. From all the
different kinds of characterization sets some efficiently
solve the first, e.g., DS [10], and others aim at the second,
e.g., UIO [21]. A characterization set can be either preset,
i.e., the input is fixed ahead execution, or adaptive, i.e.,
the next input is decided during execution [14]. However,
any of the presented methods can be applied to both prob-
lems, more or less efficiently. Here, we follow a general
approach of generating characterization sets without
regarding whether state identification or state verification
is addressed.

In this article, we present a method for the application
of model checking in order to generate characterization
sets that provide full fault coverage [4] on FSMs. Further-
more, we demonstrate the application of this method to
extended finite state machines (EFSM). We present a gen-
eral model and specifications in terms of computational
tree logic that form the input for a model checking tool
in order to generate characterization sets automatically.

This article is organized as follows: In Section 2, we dis-
cuss related work and position our approach into the

research area of automata-based testing. In Section 3, the
most important basics of state machines, timed automata,
and the UPPAAL model checker are presented. In Section
4, our approach on generating characterization sets with
UPPAAL is presented and its complexity is discussed in
Section 5. In Section 6, an example of an EFSM is given.
In Section 7 we conclude this article and present future
research topics.

2. Related work

The development of automata-theoretic testing methods
was originally motivated by checking problems of sequen-
tial circuits [15]. The adoption of these methods to software
has been an important research topic over decades. A
detailed overview of automata-based testing methods can
be found in a number of articles, e.g. [3,20]. Any of these
automata-based testing methods are demanding a minimal,
completely specified FSM.

One of the earliest approaches on automata-based test-
ing was based on DS [10,11,15], which produce relatively
short checking sequences. A method based on UIOs was
first presented by Sabnani and Dahbura in [21]. In [4],
Chow presented the W-method that produces relatively
long checking sequences, but which is applicable to each
minimal FSM. Lee and Yannakakis proposed an efficient
method for the construction of adaptive distinguishing
sequences (ADS) [14].

Furthermore, in [14] Lee and Yannakakis presented a
detailed study on the complexity of the construction of
DS and UIO, with the negative result that the construction
of both is PSPACE-hard, thus most probably only expo-
nential algorithms exist, and that not each minimal FSM
may possess one. Nevertheless, any of these methods pro-
vide defined fault coverage for a specification in the form
of a minimal FSM [4,3,11]. In [4], Chow proved full fault
coverage, i.e., the detection of missing states, missing and
illegal transitions, for the W-method. The detection of
additional states, also proposed by Chow in [4], is exponen-
tial in the number of additional states.

Furthermore, their number must be known in advance.
Therefore, the detection of additional states is only of
theoretical meaning and we classify W, UIO, and DS as
methods with full fault coverage.

The generation of DS using a model checker was already
presented in a preceding publication [19]. In the same
paper, we also demonstrated the application of DS genera-
tion to EFSMs. In [18], we generalized this approach to the
generation of preset DS, UIOs, W-sets on the basis of
FSMs. In this paper, we extend our approach to the gener-
ation of ADS and EFSMs.

3. Preliminaries
In this section, we briefly describe the basics of FSM,

EFSM, and UPPAAL Timed Automata. For a detailed
introduction into the basics of state machines we

Download English Version:

https://daneshyari.com/en/article/550784

Download Persian Version:

https://daneshyari.com/article/550784

Daneshyari.com

https://daneshyari.com/en/article/550784
https://daneshyari.com/article/550784
https://daneshyari.com/

