
An event-driven framework for inter-user

communication applications

Chien-Chih Hsu, I.-Chen Wu*

Department of Computer Science and Information Engineering, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan, ROC

Received 16 June 2004; revised 20 May 2005; accepted 24 May 2005

Available online 10 August 2005

Abstract

This paper presents an event-driven framework for inter-user communication applications, such as Internet gaming or chatting, that require

frequent communication among users. This paper addresses two major blocking problems for event-driven programming for inter-user

communication applications, namely output blocking and request blocking. For the former, an output buffering mechanism is presented to

solve this problem. For the latter, a service requesting mechanism with helper processes is presented to solve this problem. The above two

mechanisms are incorporated into the framework presented in this paper to facilitate application development. In practice, this framework

has been applied to online game development.

q 2005 Elsevier B.V. All rights reserved.

Keywords: Inter-user communication applications; Event-driven programming; Concurrent programming; Framework; Threads

1. Introduction

With the rapid growth of the Internet, applications

involving real-time communication among clients have

become increasingly important. These applications include

chat rooms such as Yahoo! Chat [44] and EFnet chat

network [11], Internet games such as Yahoo! Games [45],

Warcraft III [4], and Counter-strike [41], and present and

instant messaging systems such as ICQ [17] and MSN

Messenger [23]. Consider an example of chat room or game

system. One user types a message and others then can read

that message in real time. Since these applications involve

inter-user communication, this paper calls them inter-user

communication applications.

For inter-user communication applications, servers are

often used to handle inter-user communication. For

example, game servers receive player events (or messages)

and then respond (or pass messages) to other players. For

inter-user communication applications, server developers

generally must consider the following criteria.

1. Minimize the client response time. If the response time is

unexpectedly long, interactions may not evolve as

expected or users may run out of patience.

2. Ensure high server stability. Server crashes cause all

clients connected to that server to become disconnected.

3. Support as many clients concurrently as possible. For

example, support thousands of players on a single server.

The first criterion is essential for server programming

in inter-user communication applications. To respond to

users as rapidly as possible, servers usually hold

connections to clients. Servers thus must handle client

messages (or events) from all connections concurrently

and server developers must handle concurrent events

carefully.

Two main programming models exist for concurrent

event handling, namely threading and event-driven pro-

gramming. Threading is a general-purpose technique for

managing concurrency. The advantages of threading

compared to event-driven programming include: (a) support

of context switching among threads, and (b) support of

scalable performance on multiple CPUs.

However, some developers and researchers [27,32] have

also observed that threading has some drawbacks compared

to event-driven programming. Note that Ousterhout [27]

described the following drawbacks:

Information and Software Technology 48 (2006) 471–483

www.elsevier.com/locate/infsof

0950-5849/$ - see front matter q 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2005.05.005

* Corresponding author. Tel.: C886 3 573 1855; fax: C886 3 573 3777.

E-mail addresses: jjshie@csie.nctu.edu.tw (C.-C. Hsu), icwu@csie.

nctu.edu.tw (I.-C. Wu).

http://www.elsevier.com/locate/infsof


1. Difficult to program. Threads generally require synchro-

nous mechanisms (e.g. locks) to access shared data

safely. However, incorrect locking may cause dead-

locks, making independent module design difficult.

Besides, another problem that also increases program-

ming difficulty is that several standard libraries are not

thread-safe [24].

2. Hard to debug. For threading, it is difficult for

developers to debug the code due to data and timing

dependencies. Besides, another problem that also

increases debugging difficulty is that thread stack sizes

are normally limited [22,24], causing processes crash

when stacks overflow. In contrast, in event-driven

programming, the lack of context switching among

event handlers makes it quite easy to debug the code by

recording and then replaying the sequence of events.

3. Difficult to achieve good performance. Coarse-grain

locking yields low concurrency, while fine-grain locking

tends to increase lock operations and thus reduce

performance.

Since inter-user communication applications are often

used to facilitate heavy inter-user communication among

numerous clients (say, thousands of players in a game

system), it makes the above drawbacks even worse. The first

two drawbacks imply that it is hard for threading to satisfy

the second criterion (above) of the inter-user communi-

cation applications; and the third drawback indicates that it

is hard for threading to satisfy the third criterion. Thus, for

the application developers who are more concerned with the

second and third criteria and less concerned with the two

threading advantages (described above), the event-driven

programming model becomes attractive. Hence, this paper

is motivated to study and design an event-driven framework

for inter-user communication applications. Note that a

framework [13,33] is defined as a set of collaborative

classes that enable developers to reuse the architecture and

implementation of a generic program for a set of domain

specific applications.

Our framework is based on event-driven programming

(rather than threading) for the following reason. In inter-

user communication applications, the above three draw-

backs of threading (or the second and third criteria) are

important as described above, while the two drawbacks of

event-driven programming are less important because they

can be ignored or alternatively can be solved in this paper.

First, regarding the two drawbacks of event-driven

programming, this paper ignores the one, namely not

supporting scalable performance on multiple CPUs, because

for most inter-user communication applications servers can

be separated into several processes to achieve scalable

performance. In the case of casual games, such as Chess and

Bridge, servers can naturally be separated into several

processes, e.g. one for each game. Even for most massive

multiplayer online games (MMOGs), such as Ultima Online

[12], the server system can use several processes each

dealing with a single game scene. Second, this paper focuses

on overcoming the other drawback of event-driven

programming: the need to pay attention to the blocking

problem in event handling.

This paper addresses two major blocking problems and

presents solutions or guidelines. The two blocking problems

are described below.

1. Output blocking: This problem occurs on sending

messages to clients with corresponding full kernel

buffers. The buffer generally becomes full when network

traffic is jammed. This problem frequently is neglected

at the start of server development.

2. Request blocking: This problem occurs when a server

waits for responses after sending requests to other

servers. For example, when a game server attempts to

read several game records from a remote database

server.

This paper presents solutions for the above two blocking

problems. An output buffering mechanism is presented to

solve the output blocking problem, while a service

requesting mechanism is presented to solve the request

blocking problem. Meanwhile, for the second problem,

several system and library calls that may cause the problem

are also identified. Both mechanisms are incorporated into

the event-driven framework presented in this paper.

Practically, the event-driven framework has been used in

the CYC game system [39] that provides players with casual

games, such as Chess, Bridge, Mahjong, etc. Currently, the

CYC game system has supported up to 10,000 concurrent

players.

The rest of this paper is organized as follows. Section 2

reviews the event-driven programming model. Section 3

describes the output blocking problem and presents

solutions. Section 4 then describes the request blocking

problem and presents solutions. Section 5 presents our

experiments by applying our framework to the CYC game

system and some performance analysis. Finally, Section 6

summarizes our work.

2. Event-driven programming

This section reviews the event-driven programming

model. In this model, applications wait for specific events

and dispatch occurring events to appropriate handlers for

processing. In networked applications, event-driven based

servers generally handle both input and output events. Input

events occur when sockets are ready to read, while output

events occur when sockets are ready to write.

Most event-driven based servers in the Unix environment

use the select system call [10,18,34,36] to demultiplex

input/output events. The select-based event-driven

model has been induced as the Reactor design patterns in

[31,32]. In this pattern, the core component named

C.-C. Hsu, I.-C. Wu / Information and Software Technology 48 (2006) 471–483472



Download English Version:

https://daneshyari.com/en/article/550789

Download Persian Version:

https://daneshyari.com/article/550789

Daneshyari.com

https://daneshyari.com/en/article/550789
https://daneshyari.com/article/550789
https://daneshyari.com

