
Theory and algorithms for slicing unstructured programs

Mark Harmana,*, Arun Lakhotiab, David Binkleyc

aDepartment of Computer Science, King’s College, Strand, London WC2R 2LS, UK
bUniversity of Louisiana at Lafayette, Lafayette, LA 70504, USA

cLoyola College, 4501 North Charles Street, Baltimore, MD 21210, USA

Received 21 January 2005; revised 31 May 2005; accepted 10 June 2005

Available online 30 August 2005

Abstract

Program slicing identifies parts of a program that potentially affect a chosen computation. It has many applications in software

engineering, including maintenance, evolution and re-engineering of legacy systems. However, these systems typically contain programs

with unstructured control-flow, produced using goto statements; thus, effective slicing of unstructured programs remains an important topic

of study.

This paper shows that slicing unstructured programs inherently requires making trade-offs between three slice attributes: termination

behaviour, size, and syntactic structure. It is shown how different applications of slicing require different tradeoffs. The three attributes are

used as the basis of a three-dimensional theoretical framework, which classifies slicing algorithms for unstructured programs. The paper

proves that for two combinations of these dimensions, no algorithm exists and presents algorithms for the remaining six combinations.

q 2005 Elsevier B.V. All rights reserved.

Keywords: Program slicing; Amorphous slicing; Unstructured control-flow

1. Introduction

Mark Weiser first defined a program slice in the context

of debugging [35]. Since then program slicing has found

many applications besides debugging [17,24,27,31] includ-

ing program integration [23], comprehension [14,18] and

reuse [3,12]. There also has been an active body of work in

computing various types of slices resulting in a rich

nomenclature for classifying slicing algorithms: intraproce-

dural vs. interprocedural; static vs. dynamic; backward vs.

forward; executable vs. non-executable; and syntax-preser-

ving vs. amorphous [6,7,13,21,33].

In short, intraprocedural slices consider a single

procedure in isolation, while interprocedural slices con-

sider multiple procedures with procedure calls. Static slices

are computed from a program using static analysis while

dynamic slices are computed from a program and an input

and thus take into account a single execution of the

program. A backward slice identifies program components

that might affect a given computation. Its dual, a forward

slice, identifies program components affected by a given

component. An executable slice is an executable program

that captures a subset of the original program’s compu-

tation, while a non-executable (or closure) slice simply

identifies the elements that affect (or are affected by) a

given computation. These are often the same, but not

always [4]. Finally, a syntax-preserving slice contains only

portions of the original program’s text, while an

amorphous slice allows semantics-preserving transform-

ations [18].

Slicing has found many applications because it allows

the programmer to focus on a sub-computation; extracting it

in the form of an executable subprogram—the slice. The

sub-computation of interest may be one that the original

author of the program had not considered and so the

computation which denotes it may be arbitrarily scattered

throughout the source code of the original program. The task

of constructing the slice is thus the task of locating these

scattered components and the supporting computations

upon which they depend. It is a demanding problem because

Information and Software Technology 48 (2006) 549–565

www.elsevier.com/locate/infsof

0950-5849/$ - see front matter q 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2005.06.001

* Corresponding author. Fax: C44 1895 251 686.

E-mail address: mark@dcs.kcl.ac.uk (M. Harman).

http://www.elsevier.com/locate/infsof


it requires a deep semantic analysis in order to ensure that

the slice extracted preserves the behaviour of the original

program with respect to the computation of interest.

The problem of slicing unstructured programs is

important because many of the applications of slicing

involve maintenance, evolution, and re-engineering of

legacy systems, often written in programming styles

which make heavy use of unstructured control flow [3,9,

10,26]. Even recent systems contain a significant proportion

of goto statements. For example, an inspection of Linux

Kernel version 2.6.8.1 revealed that approximately 0.86%

of the statements are goto statements. Finally, some

programming languages (e.g. C), require the use of break
statements in common constructions (such as the switch
statement). The break statement denotes a limited form of

unstructured control flow.

Ottenstein’s Program Dependence Graph (PDG) based

algorithm is currently the best known algorithm for

intraprocedural slicing of structured programs [15,28]. This

algorithmwas not designed to compute slices of unstructured

programs. Consequently, it fails to include any goto
statements in a slice because a goto statement is neither

the source of data nor control dependence. The literature

contains several algorithms that extend Ottenstein’s algor-

ithm to compute slices of unstructured programs [1,2,11,

20,25]. These algorithms are discussed in Section 6.

This paper focuses on the computation of static,

backward, intraprocedural, executable slices of unstructured

programs, henceforth simply referred to as slices. It makes

the following contributions:

(1) Framework: The paper introduces the framework

shown in Fig. 1 for classifying slicers of unstructured

programs along three independent dimensions: termin-

ation behaviour, syntactic structure, and size. It is

shown that slicing algorithms for two of the eight

combinations within the framework, though desirable,

simply do not exist. This non-existence result is not due

to the familiar non-computability results relating to

slice minimality [35]. Rather, it is a direct result of the

particular properties of unstructured programs and their

slices.

(2) Slicing algorithms: The paper presents slicing

algorithms1 for the remaining six combinations. These

algorithms are built using common data structures,

thereby facilitating examination of the tradeoffs present

between the different possibilities. Finally, existing

algorithms for slicing unstructured programs are placed

into the framework. Interestingly, this reveals that, of

the six possibilities, only three have been considered in

previous slicing literature.

The rest of the paper is organized as follows. Section 2

contains some necessary definitions. Section 3 presents the

three-dimensions of the framework. Section 4 proves that

two classes within the framework do not exist. Section 5

presents the new slicing algorithms. Section 6 discusses

related work, places it into the framework, and compares it

to the algorithms from Section 5. Finally, conclusions are

presented in Section 7.

2. Definitions

This section defines the properties of the abstract syntax

trees, control-flow graphs, and program dependence graphs

required in subsequent sections. The language considered is

essentially C, however the focus of the paper is on

intraprocedural control issues; thus, the definitions and

examples consider primarily assignment, if-then-
else, while, do-while, sequence, goto, and ‘special’
statements. Interprocedural control issues (e.g. those

introduced by exit(), longjmp(), or exceptions), and
pointers, arrays, and other data dependence related features

are mostly ignored.

2.1. Abstract Syntax Tree

The Abstract Syntax Tree (AST) is used to treat issues

related to the order of statements in a program. This section

defines the AST and two operators used to relate the ASTs

of programs and their slices.

Definition 1. (Abstract Syntax Tree [16]). Each procedure P

is represented by a standard Abstract Syntax Tree, denoted

by AST(P). The relevant core of which is described as

follows wherein bold text indicates the node kind (lower

case) and contents (upper case), subordinate nodes appear

Fig. 1. The three dimensional framework.

1 The algorithms focus on the issue of unstructuredness and so issues to

do with other language features (for instance pointer aliasing) are not

considered.

M. Harman et al. / Information and Software Technology 48 (2006) 549–565550



Download English Version:

https://daneshyari.com/en/article/550795

Download Persian Version:

https://daneshyari.com/article/550795

Daneshyari.com

https://daneshyari.com/en/article/550795
https://daneshyari.com/article/550795
https://daneshyari.com

