
Information and Software Technology 75 (2016) 17–25 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

Effective detection of android malware based on the usage of data 

flow APIs and machine learning 

Songyang Wu , Pan Wang , Xun Li , Yong Zhang 

∗

The Third Research Institute of Ministry of Public Security, Shanghai 201204, China 

a r t i c l e i n f o 

Article history: 

Received 27 July 2015 

Revised 19 February 2016 

Accepted 14 March 2016 

Available online 16 March 2016 

Keywords: 

Android security 

Malware detection 

Privacy leakage 

a b s t r a c t 

Context. Android has been ranked as the top smartphone platform nowadays. Studies show that Android 

malware have increased dramatically and that personal privacy theft has become a major form of attack 

in recent years. These critical security circumstances have generated a strong interest in developing sys- 

tems that automatically detect malicious behaviour in Android applications (apps). However, most meth- 

ods of detecting sensitive data leakage have certain shortcomings, including computational expensiveness 

and false positives. 

Objective. This study proposes an Android malware detecting system that provides highly accurate classi- 

fication and efficient sensitive data transmission analysis. 

Method. The study adopts a machine learning approach that leverages the use of dataflow application 

program interfaces (APIs) as classification features to detect Android malware. We conduct a thorough 

analysis to extract dataflow-related API-level features and improve the k-nearest neighbour classification 

model. The dataflow-related API list is further optimized through machine learning, which enables us to 

improve considerably the efficiency of sensitive data transmission analysis, whereas analytical accuracy is 

approximated to that of the experiment using a full dataflow-related API list. 

Results. The proposed scheme is evaluated using 1160 benign and 1050 malicious samples. Results show 

that the system can achieve an accuracy rate of as high as 97.66% in detecting unknown Android malware. 

Our experiment of static dataflow analysis shows that more than 85% of sensitive data transmission paths 

can be determined using the refined API subset, whereas time of analysis decreases by nearly 40%. 

Conclusion. The usage of dataflow-related APIs is a valid feature for identifying Android malware. The 

proposed scheme provides an efficient approach to detecting Android malware and investigating privacy 

violations in malicious apps. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Today, smartphones are not only phones but also act as portable 

computers that provide diverse services such as short messages 

service (SMS), email, Internet browsing, social networking, maps, 

GPS, and mobile payment applications. As the most popular smart- 

phone platform, Android is run on approximately 52.61% of smart- 

phones worldwide as of October 2015. 1 Numerous android applica- 

tions (apps) are available through various application sources (e.g., 

Google Play Store) . However, smartphones running Android are 

∗ Corresponding author. Tel.: +86 02168571226. 

E-mail address: zhangyonglab@yeah.net (Y. Zhang). 
1 http://www.netmarketshare.com 

also targeted by malware [1] . While users enjoy the convenience of 

Android smartphones, hidden malware may steal stored sensitive 

privacy data such as contacts, SMS messages, and location infor- 

mation, for financial gain or other purposes. Recent studies [2–6] 

have examined different types of Android malware and determined 

that the most prevalent and serious is privacy violation, in which 

sensitive data are leaked to attackers. Furthermore, more danger- 

ous attacks such as botnets, fraud phishing, or information theft, 

can utilize such stolen personal data. To reduce security threats to 

users, efficient analytical tools that can identify and defend against 

privacy leakage are required. 

State-of-the-art approaches against privacy leakage in Android 

apps use data flow analysis to identity whether or not sensi- 

tive data leaves the device [7–11] . These schemes label data from 

http://dx.doi.org/10.1016/j.infsof.2016.03.004 

0950-5849/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.infsof.2016.03.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.03.004&domain=pdf
mailto:zhangyonglab@yeah.net
http://www.netmarketshare.com
http://dx.doi.org/10.1016/j.infsof.2016.03.004


18 S. Wu et al. / Information and Software Technology 75 (2016) 17–25 

sensitive data sources and track data propagated through multi- 

ple variables. When the labelled data leaves the system, the sen- 

sitive dataflow path is recorded including a source point, data 

propagation path, and sink point. However, reading and sending 

sensitive data are common behaviours in both benign and mali- 

cious apps. Many popular apps that provide interesting functions 

such as a cloud service, social networking, and mobile payment 

normally require sensitive data collection (e.g., location and con- 

tacts). This may results in numerous private data leakage alarms 

during malware detection. For example, we received more than 

700 sensitive privacy leakage alarms during an experiment in 

which we conducted an analysis on a benign mobile payment app 

(com.unionpay.mobilepay.mpos.Activity.apk) by applying the open 

source taint analytical tool FlowDroid [8] . When a human analyst 

is drowned in such an extensive number of leakage alarms, identi- 

fying effectively those that are real malicious data transmission be- 

haviours is difficult. Computational cost is another problem. Static 

taint analysis schemes always use a long list of source and sink 

APIs to scan decompiled code and detect data transmission paths 

between sources and sinks. Longer API list means increased com- 

putational overhead. In our experiments, Amandroid [9] and Flow- 

Droid [8] (using default configure settings) often require hours to 

complete analysis in some real-world Android apps. 

The purpose of this study is to determine the means of identi- 

fying Android malware and their malicious sensitive data transmis- 

sions more effectively than the current methods. We build a robust 

method for Android malware detection by applying machine learn- 

ing in which dataflow-related API-level features are employed to 

distinguish malware from benign apps. The term ‘dataflow-related 

API’ has a similar meaning as the aforementioned ‘source and sink’ 

system calls. Our scheme relies on ‘dataflow-related’ API-level fea- 

tures because they can convey the major semantics of app be- 

haviours on sensitive data. Our experiments also indicate that the 

proposed approach is effective. 

The main contributions of this study are as follows: 

• The proposed scheme combines machine learning and static 

dataflow analysis technologies which can accurately identify 

Android malware and efficiently discover sensitive data trans- 

mission paths. Approaches to extracting dataflow-related API- 

level features accurately through static program analysis are 

discussed in detail. 

• We calculated a weight value for each API according to its 

use in malware. Based on the calculated malicious weights 

set, an improved Mahalanobis distance is proposed to com- 

pute the distance of neighbouring nodes in the k-nearest neigh- 

bour (KNN) algorithm. This notably promotes the accuracy of 

our classifier. An ‘important API’ (that scores a high malicious 

weight) list is further adopted to reduce dramatically the over- 

head in terms of time of static privacy leakage analysis. 

• The proposed system is evaluated using more than 2200 real- 

world Android apps. The results show that our approach can 

achieve an accuracy that is as high as 97.66% in detecting un- 

known Android malware. In addition, the time overhead of 

static privacy leakage analysis is reduced by nearly 40%. 

2. Related works 

In recent years, many techniques and schemes have been pro- 

posed to resolve the growing problem of Android malware. 

One much-studied direction focuses on detecting sensitive in- 

formation transmission. Yang et al. [7] identified privacy leakage 

based on whether sensitive data transmission is user intended. 

Their research systematically studied means of distinguishing user- 

intended from unintended sensitive transmissions and thus pro- 

vides a useful automated tool for identifying legitimate transmis- 

sions. Static taint analysis techniques [8,9] adopt graph reachabil- 

ity analysis and program slicing to identify possible privacy leak- 

age paths. FlowDroid [8] is a static taint analysis system that is 

fully sensitive to Android context and objects. FlowDroid analy- 

ses configuration files and decompiles an Android app in order 

to construct an inter-procedural control-flow graph, which is used 

to find potential privacy leaks that are either caused by care- 

lessness or malicious intention. Amandroid [9] focuses on inter- 

component static dataflow analysis, which constructs an inter- 

component dataflow graph (IDFG) and data dependence graph 

(DDG) for an Android app. Certain security problems, such as data 

leakage and data injection, can be reduced to query DDG and IDFG. 

However, building IDFG and DDG incurs extremely high overhead. 

In experiments conducted on a server with a 2.26 GHz quad-core 

Xeon CPU and 64 GB RAM, we adopted Amandroid to analyse a 

test set of Android apps (2–5 Mb in size, downloaded from popular 

markets). However, more than half of the test cases failed because 

of memory overflow or timeout. Dynamic taint analysis techniques 

[10,12] facilitate original app code and detect sensitive data prop- 

agation during app execution. TaintDroid [10] can simultaneously 

track multiple sources of sensitive data. In the approach of Zhang 

et al. [12] , users can receive a notification when certain suspicious 

behaviour occurs. However, one inherent undesirable characteris- 

tic of such a dynamic detecting system is that code coverage can- 

not be guaranteed. For example, many apps often require users to 

register and login to activate full functionalities, which obviously 

hinders a complete dynamic analysis. 

Another research direction of related studies is to detect pos- 

sible malicious behaviour by applying machine learning. Our work 

falls into this category. Classification models based on system calls 

are common approaches for characterizing the behaviour of pro- 

grams [13] . Crowdroid [14] collects system call traces of run- 

ning apps on different Android devices and applies clustering al- 

gorithms to detect malware. Peng et al. [15] applied probabilis- 

tic learning methods to calculate risk scores according to the re- 

quested permissions of an Android app and identified a hierar- 

chical mixture of naive Bayes as the best classifier of detecting 

tasks. DroidAPIMiner [16] analyses relevant features of malware 

behaviours captured at requested permissions, critical API calls, 

package-level information, and app parameters. This program eval- 

uates several machine learning classifiers and achieves a 97.7% de- 

tection rate on malware samples using KNN. Drebin [17] adopts 

a hybrid approach to extract features from requested permissions 

and API calls as malware characteristics. Drebin uses support vec- 

tor machines as classifiers and achieves a 94% detection rate on 

malware samples. Elish et al. [18] proposed a highly accurate clas- 

sification approach. They proposed a scheme that statically extracts 

a property called user-trigger dependence as a classification fea- 

ture. This property includes dataflow features related to the man- 

ner in which a user inputs trigger sensitive API invocations. Over- 

all, previous approaches that used machine learning mainly fo- 

cused on accurately detecting Android malware. Certain critical as- 

pects, such as seeking sensitive data leakage and digital forensics 

of malicious behaviour, were not considered. Compared with the 

aforementioned existing schemes, our work verifies that the usage 

of dataflow-related APIs is a valid feature for identifying Android 

malware. Moreover, we used the results of a classification model 

to reduce significantly the computational overhead of statics taint 

analysis. 

3. Design 

We adopt a generic data mining approach to build our Android 

malware detection system. The system consists of two phases: 

training and identification. As illustrated in Fig. 1 , the system in 

the training phase takes both benign and malicious Android apps 



Download English Version:

https://daneshyari.com/en/article/550871

Download Persian Version:

https://daneshyari.com/article/550871

Daneshyari.com

https://daneshyari.com/en/article/550871
https://daneshyari.com/article/550871
https://daneshyari.com

