Information and Software Technology 75 (2016) 56-70

Contents lists available at ScienceDirect INFORMATION
7 —

SOFTWARE
TECHNOLOGY

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

The effect of automatic concern mapping strategies on conceptual
cohesion measurement

@ CrossMark

Bruno Silva®* Claudio Sant’AnnaP®, Neylor RochaP®, Christina ChavezP

@ Universidade Salvador - UNIFACS Salvador, Bahia, Brazil
b Department of Computer Science, Federal University of Bahia Salvador, Bahia, Brazil

ARTICLE INFO ABSTRACT

Article history:

Received 19 June 2015
Revised 20 March 2016
Accepted 23 March 2016
Available online 1 April 2016

Keywords:

Module cohesion

Cohesion metrics

Concern mapping
Comparative empirical study

Context: Cohesion has been recognized as an important quality attribute of software design across
decades. It can be defined as the degree to which a module is focused on a single concern of soft-
ware. A concern is any concept, feature, requirement or property of the problem or solution domain.
Conceptual cohesion is an alternative way of cohesion measurement based on what concerns each mod-
ule addresses. Therefore, adopting a strategy to map concerns to source code elements is challenging but
necessary.

Objective: We aim at providing empirical evidence about whether automatic concern mapping strategies
are already ready to be used effectively for conceptual cohesion measurement.

Method: We carried out an empirical study to assess the ability of conceptual cohesion measurement
using different automatic concern mapping strategies in selecting the least cohesive modules.

Results: Conceptual cohesion measurements over the two analyzed mapping strategies performed weakly
in the ability of selecting the least cohesive modules. We then provide a discussion to explain the
reasons.

Conclusion: Concern mapping strategies should be carefully chosen for conceptual cohesion measurement,
specially if automatic mapping is under consideration. Manual mapping is still the most reliable way
for computing conceptual cohesion. We pointed out limitations in automatic mapping strategies that go
beyond conceptual cohesion measurement purposes and which should be considered in future research
or applications in industry.

© 2016 Published by Elsevier B.V.

1. Introduction

Cohesion is one of the key properties of software design.
Amongst several definitions, cohesion can be defined as the degree
to which a module! is focused on a single concern of software [1-
3]. A concern is any concept, feature, requirement or property of
the problem or solution domain of software [4].

However, measuring cohesion is not straightforward as it
is difficult to capture what concerns a module realizes. In-
deed, several researchers have attempted to provide an objec-
tive and effective way to measure cohesion [5]. Most of them
rely on structural information extracted from the source code.

* Corresponding author. Tel.: +5571991669687.
E-mail addresses: bruno.carreiro@pro.unifacs.br (B. Silva), santanna@dcc.ufba.br
(C. Sant’Anna), neylorbr@dcc.ufba.br (N. Rocha), flach@dcc.ufba.br (C. Chavez).
1 A module can be a class, an interface, or whatever abstraction representing a
module as a unit of implementation.

http://dx.doi.org/10.1016/j.infsof.2016.03.006
0950-5849/© 2016 Published by Elsevier B.V.

For example, the most traditional and well-known cohesion met-
rics quantify cohesion by counting pairs of methods of a class
that access the same attributes [6,7]. This notion of cohesion is
dependent on the source code structure and does not consider
any abstract information regarding the concerns implemented
by the classes. We classify this group of metrics as Structural
Cohesion.

In contrast, there is an alternative group of recently proposed
cohesion metrics which attempts to measure module cohesion by
considering the concerns each module addresses [3,8,9]. For exam-
ple, the MWE (Maximal Weighted Entropy) metric [8] executes a
text mining method to identify concerns in source code and then
computes cohesion based on how concerns are distributed over
each software module. In this direction, we have been investigating
the LCbC (Lack of Concern-based Cohesion) metric [9-11], which
measures cohesion by counting the number of concerns a module
addresses. MWE and LCbC are classified in the group of Conceptual
Cohesion metrics.


http://dx.doi.org/10.1016/j.infsof.2016.03.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.03.006&domain=pdf
mailto:bruno.carreiro@pro.unifacs.br
mailto:santanna@dcc.ufba.br
mailto:neylorbr@dcc.ufba.br
mailto:flach@dcc.ufba.br
http://dx.doi.org/10.1016/j.infsof.2016.03.006

B. Silva et al./Information and Software Technology 75 (2016) 56-70 57

In theory, conceptual cohesion metrics represent better the real
notion of cohesion than structural cohesion metrics as they are
supposed to measure this property by considering the abstract in-
formation of concerns besides the source code structure. In fact,
researchers have found evidence in this direction and recent re-
sults have demonstrated the potential of conceptual cohesion met-
rics to be further investigated and used in practice. For instance,
in a previous study we found that conceptual cohesion is closer
to developers’ reasoning even for unexperienced ones [11]. Also,
researchers have demonstrated an association between conceptual
cohesion and external quality attributes such as bug-proneness
[8,12] and change-proneness [9].

However, although researchers have pointed out advantages of
conceptual cohesion compared to structural cohesion, it is more
difficult to measure conceptual cohesion because it relies on the
so-called Concern Mapping [4]. A concern mapping is the assign-
ment of software concerns to source code elements (e.g., attributes,
methods, classes). In Section 3, we give an overview of concern
mapping techniques summarized in five categories. Their basic in-
tent is to heuristically provide information about what concerns
each module addresses in a software system. They also vary on
the level of automation (manual, semi or fully automatic). In gen-
eral, manual concern mapping is more accurate as developers can
apply their multiple knowledge, experience and may also consider
auxiliary artifacts besides source code for supporting them. Several
works have used manual mappings in their datasets [13-15]. How-
ever, manual mapping is too time-consuming, thus becoming diffi-
cult for developers to cost-effectively build and keep it consistent
over time.

Therefore, the high cost of manual concern mapping may hin-
der the adoption of conceptual cohesion in practice. Some concern
mapping strategies, such as the one used for MWE metric compu-
tation, employ a fully automatic heuristic. However, current auto-
matic strategies for concern mapping have limitations which may
cause failures in identifying concerns. Ultimately, such failures may
affect, to some unknown extent, conceptual cohesion measurement
[9].

In this context, the main goal of this paper is to investigate
the effect of applying automatic concern mapping strategies for
conceptual cohesion measurement. We aim at providing scientific
evidence that could help: (i) researchers on further works in the
field of software measurement; (ii) tool builders looking for incor-
porating innovative ways of cohesion measurement in their prod-
ucts; and (iii) practitioners in applying conceptual cohesion in their
software measurement tasks. Therefore, our overarching research
question is: Are automatic concern mapping strategies already ready
to be used effectively for conceptual cohesion measurement in place
of manual mappings?

We carried out an empirical study where we investigated the
ability of two different conceptual cohesion measurements, using
two automatic mapping strategies, in selecting the least cohesive
modules. The manual mapping strategy is our baseline for gener-
ating a reference conceptual cohesion measurement. In summary,
we found that the two automatic strategies we applied have limi-
tations yet, so they negatively affect an effective use of conceptual
cohesion measurement. Also, we discussed possible reasons we ob-
served from this finding and how they could be exploited in fur-
ther works for researchers and practitioners.

The remainder of the paper is organized as follows:
Section 2 describes conceptual cohesion metrics and explains
our metric choice for this study; Section 3 presents the concept
of concern mapping and an overview of available techniques; In
Section 4 we explain the study scope and corresponding method-
ology; Section 5 details the study settings; Section 6 presents
results and findings, whereas Section 7 discusses their implica-
tions; Section 8 explains threats to validity; Section 9 describes

public class RelationSpouse extends Relation {
public Person husband;
public Person wife;

public RelationSpouse (Person husband, Person wife)[]

public String getRelationType (Person person) {
if (person.equals(husband))
return WIFE;
else if (person.equals(wife))
return HUSBAND;
else(
JOptionPane. shovMessageDialog(null,
"Wrong person type for spouse relationship...”);

return INVALID RELATIONSHIP;

public Person getPartner(Person person){
if (person.equals(husband))
return wife;
else if (person.equals(wife))
return husband;
else{
1 JOptionPane.shovMessageDialog (null, = )
i "Wrong person type for spouse relationship...");
rewurn hm,' R 2 e

}

public Person getHusband() {[]

public Person getWife() {[]

public Person getPersonl () {[]

public Person getPerson2() {[]

public boolean equals(Object obj){[]

Fig. 1. A sample class and its concerns mapped. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article.)

related work; and Section 10 presents the conclusion and future
work.

2. Conceptual Cohesion Measurement

C3 (Conceptual Cohesion of Classes) [12], MWE (Maximal
Weighted Entropy) [8] and LCbC (Lack of Concern-based Cohesion)
[9] are the most recent conceptual cohesion metrics available in
literature. On the one hand, C3 and MWE directly depend upon
text mining techniques for identifying concerns in source code and
then computing cohesion. On the other hand, for the same pur-
pose, LCbC is not dependent upon a specific technique. LCbC quan-
tifies cohesion of a given module in terms of the number of con-
cerns addressed by it. It just counts the number of concerns iden-
tified in each module. Therefore, it is possible to compute LCbC by
having any concern mapping strategy applied beforehand.

As C3 and MWE strongly depend upon a specific concern map-
ping technique, this study uses LCbC as the representative metric
for conceptual cohesion. The study purpose is to assess conceptual
cohesion measurement on top of different concern mapping strate-
gies, which is only possible with LCbC.

To exemplify LCbC measurement, Fig. 1 illustrates a Java class
with two attributes and nine methods, which is part of a sys-
tem that builds and represents family relationships as trees. Par-
ticularly, this class represents the spouse relationship between two
people: the husband and wife attributes. The methods involve: get-
ting access to private attributes, getting the relation type, getting
the partner object, objects comparison, and exporting the relation-
ship to a given file. The light pink background, predominant in the
figure, highlights the class main concern, which is what the class
is supposed to implement (i.e., representing spouse relationship).
The blue background highlights the code fragments calling a win-
dow box to output a message in the user interface, and the green
background highlights a method to export the relationship repre-
sented by the class to a given file. Those additional two concerns



Download English Version:

https://daneshyari.com/en/article/550874

Download Persian Version:

https://daneshyari.com/article/550874

Daneshyari.com


https://daneshyari.com/en/article/550874
https://daneshyari.com/article/550874
https://daneshyari.com

