
Information and Software Technology 75 (2016) 90–104 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

An empirical investigation into the effect of slice types on slice-based 

cohesion metrics 

Yibiao Yang , Yangyang Zhao , Changsong Liu , Hongmin Lu , Yuming Zhou 

∗, Baowen Xu 

State Key Laboratory for Novel Software Technology, Nanjing University, China 

a r t i c l e i n f o 

Article history: 

Received 2 June 2015 

Revised 28 February 2016 

Accepted 1 April 2016 

Available online 12 April 2016 

Keywords: 

Cohesion 

End slice 

Metric slice 

Metrics 

a b s t r a c t 

Context: There is a debate about whether end slice or metric slice is preferable for computing slice-based 

cohesion metrics. However, up till now, there is no consensus about this issue. 

Objective: We aim to investigate the relationship between end-slice-based and metric-slice-based cohe- 

sion metrics and then determine which type of slice is preferable for computing slice-based cohesion 

metrics. 

Method: We used forty widely used open-source software systems to conduct the study. First, we com- 

pute the baseline values for end-slice-based and metric-slice-based cohesion metrics. Then, we inves- 

tigate their relationships with module size. Finally, we employ correlation analysis and principal com- 

ponent analysis to analyze the relationships between end-slice-based and metric-slice-based cohesion 

metrics. 

Results: End-slice-based and metric-slice-based cohesion metrics have similar baseline metric values. 

Furthermore, they exhibit a similar negative correlation with module size. In particular, the results from 

correlation analysis and principal component analysis reveal that they essentially measure the same co- 

hesion dimensions. 

Conclusion: From the viewpoint of metric values, there is little difference between end-slice-based and 

metric-slice-based cohesion metrics. We hence recommend choosing end slice for computing slice-based 

cohesion metrics in practice, as extra cost involved in data collection could be avoided. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Cohesion is an important software quality attribute which refers 

to the tightness of elements within a module [1,2] . Highly cohe- 

sive modules are desirable in a system as they are easier to de- 

velop, maintain, and reuse, and hence are less fault-prone [1,2] . In 

the last three decades, researchers developed many slice-based co- 

hesion metrics to quantify the cohesion of a module at the func- 

tion level of granularity [3–10] . In [11] , Meyers and Binkley found 

that slice-based cohesion metrics could be used to quantify the 

deterioration that accompanies software evolution. More recently, 

our study shows that slice-based cohesion metrics are not redun- 

dant with respect to the most commonly used code/process met- 

rics and are of practically important value in the context of fault- 

proneness prediction [12] . Therefore, slice-based cohesion metrics 

can be used as an important quality indicator for practitioners. In 

other words, practitioners could use these metrics to identify po- 

tentially faulty modules for quality enhancement. 

∗ Corresponding author. Tel.: + 86 25 89682450. 

E-mail address: cs.zhou.yuming@gmail.com (Y. Zhou). 

For a given function, the computation of a slice-based cohesion 

metric consists of the following three steps. The first step is to 

identify the output variables of the function, including function re- 

turn values, modified global variables, printed variables, and mod- 

ified reference parameters [13] . The second step is to employ pro- 

gram slicing techniques to obtain one slice with respect to each 

output variable of the function [9,14] . The third step is to use 

the resulting slices to compute the slice-based cohesion metric. 

Of these three steps, the second step is the most crucial, as it is 

the basis for the computation of slice-based cohesion metrics. In 

the literature, there is a debate about whether end slice or metric 

slice should be used for computing slice-based cohesion metrics 

[11,12,15] . An end slice with respect to variable v is the backward 

slice with respect to v at the end point of the module [9,16] . A 

metric slice with respect to variable v is the union of the back- 

ward slice with respect to v at the end point of the module and 

the forward slice computed from the top of the backward slice [7] . 

Consequently, a metric slice is more time-consuming to compute 

compared with an end slice. In most previous studies, end slice 

was used to compute slice-based cohesion metrics [5–9,11,15–18] . 

However, Ott and her colleagues argued that metric slice can re- 

sult in more accurate cohesion metrics [10] . Up till now, there is 

http://dx.doi.org/10.1016/j.infsof.2016.04.001 

0950-5849/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.infsof.2016.04.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.04.001&domain=pdf
mailto:cs.zhou.yuming@gmail.com
http://dx.doi.org/10.1016/j.infsof.2016.04.001


Y. Yang et al. / Information and Software Technology 75 (2016) 90–104 91 

no consensus about which type of slice is preferable for slice-based 

cohesion metrics. 

In this study, we aim to attack this issue. To this end, we con- 

duct a comparative study to investigate the relationship between 

end-slice-based and metric-slice-based cohesion metrics. The sub- 

ject systems in our study consist of forty open-source software 

systems. We use a source code analysis tool called Frama-C to 

collect slice-based cohesion metrics. Based on the data collected 

from these forty systems, we first compute the baseline metric val- 

ues for end-slice-based and metric-slice-based cohesion metrics. 

As stated by Meyers and Binkley [11] , baseline values for slice- 

based metrics “are useful for identifying degraded modules” and 

can “aid in the transfer of technology from academia to industry”. 

Similar to [11] , we use the average metric values and the 95% con- 

fidence interval to compute the baseline metric values. Then, we 

investigate their relationships with module size. This will help us 

determine “whether slice-based cohesion metrics are nothing more 

than a proxy for module size” [11] . If they are, it will mean that 

they do not provide new information. Consequently, there would 

be no need to use them in practice, especially considering the rel- 

atively high computation cost incurred. Finally, we employ cor- 

relation analysis and principal component analysis (PCA) to an- 

alyze the relationships between end-slice-based cohesion metrics 

and metric-slice-based cohesion metrics. The purpose of this aims 

to determine whether end-slice-based and metric-slice-based co- 

hesion metrics indeed measure the same cohesion dimensions, al- 

though different types of slices are used. The experimental results 

show that end-slice-based and metric-slice-based cohesion met- 

rics have similar baseline metric values. Furthermore, they exhibit 

a similar negative correlation with module size. In other words, 

modules with larger size tend to be less cohesive. In particular, 

the results from correlation analysis and PCA reveal that end-slice- 

based and metric-slice-based cohesion metrics essentially measure 

the same software cohesion dimensions. Therefore, from the view- 

point of metric values, there is little difference between end-slice- 

based and metric-slice-based cohesion metrics. We hence recom- 

mend choosing end slice rather than metric slice, as extra cost 

evolved in data collection could be avoided. 

The rest of this paper is organized as follows. Section 2 intro- 

duces slice-based cohesion metrics that we will investigate. Section 

3 introduces the experimental methodology used for this study, in- 

cluding the data sets and the data analysis method. Section 4 re- 

ports in detail the experimental results. Section 5 discusses the 

findings. Section 6 presents the related work. Section 7 examines 

the threats to validity of our study. Section 8 concludes the paper 

and outlines directions for future work. 

2. Slice-based cohesion metrics 

In this section, we first introduce the concept of end slice and 

metric slice. Then, we describe these slice-based cohesion metrics 

that will be investigated in this study. Finally, we use an exam- 

ple function to illustrate the computations of end-slice-based and 

metric-slice-based cohesion metrics. 

2.1. End slice and metric slice 

As aforementioned, for a given module, the most crucial step 

for the computations of slice-based cohesion metrics is to obtain 

either the end slice or the metric slice for each output variable of 

a module. An end slice with respect to variable v is the backward 

slice with respect to v at the end point of the module [9,16] . A 

metric slice with respect to variable v is the union of the backward 

slice with respect to v at the end point of the module and the for- 

ward slice computed from the top of the backward slice [7] . More 

specifically, a backward slice of a module at statement n with re- 

spect to variable v is the sequence of all statements and predicates 

that might affect the value of v at n. A forward slice of a module at 

statement n with respect to variable v is the sequence of all state- 

ments and predicates that might be affected by the value of v at n . 

It is easy to know that end slice only takes into account the uses 

data relationship. However, metric slice also takes into account the 

used by data relationship [3] . 

We next use an example function fun shown in Table 1 , which 

aims to determine the smallest, the largest, and the range of an 

array, to illustrate the concepts of end slice and metric slice. In 

Table 1 , the first column lists the statement number (excluding 

non-executable statements such as blank statements, “{”, and “}”). 

The second column lists the code of the example function. As 

can be observed, the output variables of function fun are smallest, 

largest , and range . The former two variables are the modified ref- 

erence parameters and the latter one is the function return value. 

The third to fifth columns list the end slice for each output vari- 

able. The sixth to eighth columns list the forward slice computed 

from the top of the end slice with respect to each output vari- 

able. The ninth to eleventh columns list the metric slice for each 

output variable. Here, a vertical bar “|” in the last nine columns 

denotes that the indicated statement is part of the corresponding 

slice for the named output variable. As can be seen, statement is 

the basic unit for these slices. In other words, end slice and met- 

ric slice shown in Table 1 are indeed statement-level end slice and 

statement-level metric slice . We next use the output variable largest 

as an example to explain the computation of end slice and metric 

slice. In Table 1 , for the output variable largest of the function fun , 

we can find that: 1) the 7th, 9th, 10th, 11th, 14th, 15th, and 16th 

statements belong to its end slice since these statements will have 

an direct or indirect impact on the final value of largest at the end 

of the function fun ; 2) the 14th, 15th, 17th, and 18th statements 

belong to its forward slice of the variable largest since these four 

statements are directly or indirectly impacted by the first defini- 

tion statement of variable largest (i.e. the 10th statement “∗largest 

= ∗smallest;”). 

In order to obtain the dependencies at a finer granularity, re- 

searchers further propose the concepts of data-token-level end 

slice and metric slice, in which data token is the basic unit [3] . 

As shown in the second column in Table 1 , one statement might 

consist of a number of data tokens (i.e. the definitions of and ref- 

erences to variables and constants). For example, the ninth state- 

ment “∗smallest = A[0];” consists of the following three data to- 

kens: “smallest”, “A”, and “0 ′′ . In this sense, data token is a finer 

granularity than statement. Table 2 shows the data-token-level end 

slice and metric slice for each output variable of the function fun. 

In this table, T i in the second column indicates the i-th data token 

for T in the function, “1 ′′ and “0 ′′ in the last six columns respec- 

tively denotes that the indicated data-token is or is not part of the 

corresponding slice for the named output variable. 

2.2. Slice-based cohesion metrics 

After obtaining the end slices or metric slices for individual out- 

put variables of a given function, we can use them to calculate 

slice-based cohesion metrics. In this study, a function is regarded 

as a module and the output variables of a function consist of the 

function return value, modified global variables, modified reference 

parameters, and standard outputs by the function. In the last three 

decades, researchers proposed the following ten slice-based cohe- 

sion metrics: Coverage, MaxCoverage, MinCoverage, Tightness, Over- 

lap, SFC, WFC, A, NHD , and SBFC [3–10] . 

Of these ten metrics, Coverage, Tightness , and Overlap can be 

originally traced back to Weiser’s work [16] . For a given module, 

Weiser first sliced on every output statement occurred in the mod- 



Download English Version:

https://daneshyari.com/en/article/550876

Download Persian Version:

https://daneshyari.com/article/550876

Daneshyari.com

https://daneshyari.com/en/article/550876
https://daneshyari.com/article/550876
https://daneshyari.com

