
Information and Software Technology 72 (2016) 110–124

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Software metrics fluctuation: a property for assisting the metric

selection process

Elvira-Maria Arvanitou a, Apostolos Ampatzoglou a,∗, Alexander Chatzigeorgiou b,
Paris Avgeriou a

a Department of Mathematics and Computer Science, University of Groningen, Zernike Campus, Groningen, The Netherlands
b Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

a r t i c l e i n f o

Article history:

Received 24 May 2015

Revised 22 December 2015

Accepted 22 December 2015

Available online 30 December 2015

Keywords:

Object-oriented metrics

Fluctuation

Case study

Software evolution

a b s t r a c t

Context: Software quality attributes are assessed by employing appropriate metrics. However, the choice

of such metrics is not always obvious and is further complicated by the multitude of available metrics.

To assist metrics selection, several properties have been proposed. However, although metrics are often

used to assess successive software versions, there is no property that assesses their ability to capture

structural changes along evolution.

Objective: We introduce a property, Software Metric Fluctuation (SMF), which quantifies the degree to

which a metric score varies, due to changes occurring between successive system’s versions. Regarding

SMF, metrics can be characterized as sensitive (changes induce high variation on the metric score) or

stable (changes induce low variation on the metric score).

Method: SMF property has been evaluated by: (a) a case study on 20 OSS projects to assess the ability of

SMF to differently characterize different metrics, and (b) a case study on 10 software engineers to assess

SMF’s usefulness in the metric selection process.

Results: The results of the first case study suggest that different metrics that quantify the same quality

attributes present differences in their fluctuation. We also provide evidence that an additional factor that

is related to metrics’ fluctuation is the function that is used for aggregating metric from the micro to

the macro level. In addition, the outcome of the second case study suggested that SMF is capable of

helping practitioners in metric selection, since: (a) different practitioners have different perception of

metric fluctuation, and (b) this perception is less accurate than the systematic approach that SMF offers.

Conclusions: SMF is a useful metric property that can improve the accuracy of metrics selection. Based

on SMF, we can differentiate metrics, based on their degree of fluctuation. Such results can provide input

to researchers and practitioners in their metric selection processes.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Software measurement is one of the most prevalent ways of

monitoring software quality [21]. In practice, software quality mea-

surement activities are governed by a measurement plan (e.g., de-

veloped based on the IEEE/ISO/IEC-15939 Std. [1]), which, among

others focuses in defining the measurement goals, and the metrics

selection process. According to Fenton and Pfleeger [16], building

a measurement plan involves answering three main questions, two

on defining the measurement goals, and a third one, on selecting

appropriate metrics:

∗ Corresponding author. Tel.: +30 2310611090.

E-mail addresses: e.m.arvanitou@rug.nl (E.-M. Arvanitou),

apostolos.ampatzoglou@gmail.com, a.ampatzoglou@rug.nl (A. Ampatzoglou),

achat@uom.gr (A. Chatzigeorgiou), paris@cs.rug.nl (P. Avgeriou).

• What to measure? This question has two levels: (a) what qual-

ity attributes to measure?—this is related to the identification

of the most important concerns of the stakeholders, and (b)

what parts of the system should be assessed?—this is related

to whether quality measurement should be performed on the

complete system (measure-in-large) or on a specific design “hot-

spot” (measure-in-small) [16].

• When to measure? This question has two levels as well. The

first level concerns the measurement frequency, where one can

choose between two major options: (i) perform the measure-

ment tasks once during the software lifecycle (measure once),

or (ii) perform measurement tasks many times during the soft-

ware lifecycle (measure repeatedly) [16]. The second level con-

cerns the development phase(s) when measurement is to be

performed. This decision sets some additional constraints to

the metric selection process, in the sense that if one selects to

http://dx.doi.org/10.1016/j.infsof.2015.12.010

0950-5849/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2015.12.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.12.010&domain=pdf
mailto:e.m.arvanitou@rug.nl
mailto:apostolos.ampatzoglou@gmail.com
mailto:a.ampatzoglou@rug.nl
mailto:achat@uom.gr
mailto:paris@cs.rug.nl
http://dx.doi.org/10.1016/j.infsof.2015.12.010


E.-M. Arvanitou et al. / Information and Software Technology 72 (2016) 110–124 111

perform measurement activities in an early development phase

the available metric suites are different from those that are

available at the implementation level. Usually, design-level met-

rics are less accurate than code-level metrics; however, they are

considered equally important, because they provide early in-

dications on parts of the system that are not well-structured.

A detailed discussion on high-level metrics (design-level) and

low-level metrics (code-level), can be found in [3].

• How to measure? While answering this question, one should se-

lect the most fitting measure from the vast collection of avail-

able software quality metrics.

All aforementioned questions are inter-dependent, so the order

of answering them varies; for example one could start from met-

ric selection (i.e. ‘how’) and then move on to answer ‘when’ and

‘what’ (i.e., measurement goal), or the other way around. When

answering one of the questions, the available options for answer-

ing the subsequent questions are getting more limited (an elab-

orate discussion on the inter-connection among the answers to

these questions is presented in Section 7). For example, if someone

selects to measure cohesion at the design phase, the set of avail-

able metrics is limited to the high-level cohesion metrics, as dis-

cussed by Al Dallal and Briand [3]; whereas if one selects to mea-

sure cohesion at implementation level, the set of available metrics

is broadened to the union of high- and low-level cohesion metrics

[3]. Due to the high number of available metrics, the selection of

metrics that quantify the target quality attributes is far from triv-

ial. For example, concerning cohesion and coupling, recent studies

describe more than 20 metrics for each one of them [3] and [19].

This selection process becomes even more complex by the option

to choose among multiple aggregation functions. Such functions are

used to aggregate metric scores from the micro-level of individual

artifacts (e.g. classes), to the macro-level of entire systems [13] and

[33], whose industrial relevance is discussed in detail by Mordal et

al. [29]. In order to assist this metric selection process, researchers

and practitioners have proposed several metric properties that can

be used for metrics validation and characterization [1,9] and [10].

Metrics selection becomes very interesting in the context of

software evolution. Along evolution metric scores change over time

reflecting the changes of different characteristics of the underly-

ing systems. For example a metric that concerns coupling, changes

from one version of the system to the other, reflecting the changes

in the dependencies among its classes. Therefore, a quality assur-

ance team needs to decide on the accuracy with which they wish

to capture small-scale changes from one version of the system to

the other. This decision is influenced by the goals of the measure-

ment (i.e., the answers to the first two aforementioned questions—

“what and when to measure?”). In particular, both available options

(i.e., capture small changes or neglect them) may be relevant in

different contexts. For example, when trying to assess the overall

software architecture, the quality team might not be interested in

changes that are limited inside a specific component; on the con-

trary, when trying to assess the effect of applying a source code

refactoring, e.g., extract a superclass [18], which is a local change,

a small fluctuation of the metric score should be captured. Thus, a

property that characterizes a metric’s ability to capture such fluc-

tuations would be useful in the metric selection processes. Never-

theless, to the best of our knowledge, there is no such property in

the current state of the art for research or practice.

Therefore, in this paper, we define a new metric property,

namely Software Metrics Fluctuation (SMF), as the degree to which

a metric score changes from one version of the system to the other

(for more details see Section 3). While assessing a metric with re-

spect to its fluctuation, it can be characterized as stable (low fluc-

tuation: the metric changes insignificantly over successive versions)

or as sensitive (high fluctuation: the metric changes substantially

over successive versions). Of course, the property is not binary but

continuous: there is a wide range between metrics that are highly

stable and those that are highly sensitive. Although the observed

metric fluctuations depend strongly on the underlying changes

in a system, the metrics calculation process also plays a signif-

icant role for the assessment of fluctuation. For example, “What

structural characteristics does it measure?”, “How frequently/easily do

these characteristics change?” or “What is the value range for a met-

ric?”. In order for the fluctuation property to be useful in prac-

tice it should be able to distinguish between different metrics that

quantify the same quality attribute (e.g., cohesion, coupling, com-

plexity, etc.). This would support the metric selection process by

guiding practitioners to select a metric that is either stable or sen-

sitive according to their needs for a particular quality attribute. Ad-

ditionally, several metrics work at the micro-level (e.g., method-

or class-level), whereas practitioners might be interested in work-

ing at a different level (e.g., component- or system-level). The most

frequent way of aggregating metrics from the micro- to the macro-

level is the use of an aggregation function (e.g., average, maxi-

mum, sum, etc.). Therefore, we need to investigate if SMF is able

to distinguish between different aggregation functions when used

for the same metric. Such an ability would enable SMF to provide

guidance to practitioners for choosing the appropriate combination

of metric and aggregation function.

In this paper we empirically validate SMF by assessing: (a) the

fluctuation of 19 existing object-oriented (OO) metrics, through a

case study on open-source software (OSS) projects—see Section 5,

and (b) its usefulness by conducting a second case study with 10

software engineers as subject—see Section 6. The contribution of

the paper is comprised of both the introduction and validation of

SMF as a property and the empirical evidence derived from both

case studies. The organization of the rest of the paper is as fol-

lows: Section 2 presents related work and Section 3 presents back-

ground information on the object-oriented metrics that are used

in the case studies; Section 4 discusses fluctuation and introduces

the definition of a software fluctuation metric; Section 5 describes

the design and results of the case study performed so as to as-

sess the fluctuation of different object-oriented metrics; Section 6

presents the design and outcome of the case study conducted for

empirically validating the usefulness of SMF; Section 7 discusses

the main findings of this paper; Section 8 presents potential threats

to the validity; and Section 9 concludes the paper.

2. Related work

Since the proposed Software Metrics Fluctuation property al-

lows the evaluation of existing metrics, past research efforts re-

lated to desired metric properties will be presented in this section.

Moreover, since the proposed property is of interest when some-

one aims at performing software evolution analysis, other metrics

that have been used in order to quantify aspects of software evo-

lution will be described as well.

2.1. Metric properties

According to Briand et al. [9,10] metrics should conform to var-

ious theoretical/mathematical properties. Specifically, Briand et al.,

have proposed several properties for cohesion and coupling met-

rics [9,10], namely: Normalization and Non-Negativity, Null Value

and Maximum Value, Monotonicity, and Merging of Unconnected

Classes [9,10]. The aforementioned metric properties are widely

used in the literature to mathematically validate existing metrics

of these categories (e.g., by Al Dallal et al. [2]). Additionally, in

a similar context, IEEE introduced six criteria that can be used

for assessing the validity of a metric in an empirical manner.



Download English Version:

https://daneshyari.com/en/article/550908

Download Persian Version:

https://daneshyari.com/article/550908

Daneshyari.com

https://daneshyari.com/en/article/550908
https://daneshyari.com/article/550908
https://daneshyari.com

