ELSEVIER Contents lists available at SciVerse ScienceDirect ## **Catalysis Today** journal homepage: www.elsevier.com/locate/cattod # Effect of Y-stabilized ZrO₂ as support on catalytic performance of Pt for *n*-butane oxidation Masaaki Haneda ^{a,*}, Magali Bonne ^{b,c}, Daniel Duprez ^b, Masakuni Ozawa ^a - ^a Ceramics Research Laboratory, Nagoya Institute of Technology, 10-6-29 Asahigaoka, Tajimi, Gifu 507-0071, Japan - b Laboratoire de Catalyse en Chimie Organique (LACCO), UMR 6503, CNRS Université de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers, France - ^c Institut de Sciences des Matériaux de Mulhouse IS2M, LRC-7228 CNRS, Equipe Matériaux à Porosité contrôlée, Université de Haute Alsace ENSCMu, 3 rue Alfred Werner, 68093 Mulhouse Cedex, France #### ARTICLE INFO # Article history: Received 10 January 2012 Received in revised form 12 March 2012 Accepted 19 March 2012 Available online 11 April 2012 Keywords: Y-stabilized zirconium oxide Platinum dispersion n-Butane oxidation Metal-support interaction #### ABSTRACT The effect of Y-stabilized ZrO_2 as support on the Pt dispersion and catalytic activity for the total oxidation of n-butane was investigated. From XRD, TEM and CO chemisorption measurements, Pt particles were found to be well dispersed with a size of ca. 10 nm over the surface of ZrO_2 and Y-stabilized ZrO_2 , when Pt supported catalysts were calcined at $600\,^{\circ}$ C. Although Pt particles supported on ZrO_2 were significantly sintered by high temperature calcination above $800\,^{\circ}$ C, no aggregation of Pt particles was observed for Pt/Y-ZrO₂. When the catalyst was calcined at higher temperatures, Pt catalysts supported on Y-stabilized ZrO_2 showed higher activity than Pt/ ZrO_2 for the total oxidation of n-butane. The intrinsic activity, expressed in terms of turnover frequency (TOF), increased with the decrease in Pt dispersion, indicating that n-butane oxidation over Pt catalysts supported on Y-stabilized ZrO_2 is a structure sensitive reaction. Y_2O_3 additive plays a role in improving the thermal stability of Pt particles through the metal-support interaction, while it does not alter the catalytic performance of Pt as catalytic active sites. © 2012 Elsevier B.V. All rights reserved. #### 1. Introduction Air pollution caused by hydrocarbons (HCs) emitted from combustors and engines is one of the most serious environmental problems because of their toxicity to human health and formation of photochemical smog [1]. A catalytic converter system is one of the most promising solutions to reduce HCs in exhaust gases. However, most HCs, especially in automotive exhaust gases, are emitted during the cold-start operation before warming up the catalytic converter [2]. Therefore, the removal of HCs at low temperature is an important issue in protecting the environment. Supported Pt catalysts are widely employed as oxidation catalysts [3–5]. Therefore, extensive research has been undertaken to improve the activity and durability of supported Pt catalysts [6–9]. We have studied the catalytic performance of Pt catalysts supported on various metal oxides (Al₂O₃, ZrO₂, TiO₂ and H-ZSM-5) for the total oxidation of a mixture of n-decane and 1-methylnaphthalene as model hydrocarbons included in diesel exhaust to develop a highly active diesel oxidation catalyst [10,11]. We found that Pt/Al₂O₃ and Pt/ZrO₂ show high catalytic activity even after aging treatment at 750 °C for 50 h in air, and the surface density of the acidic and basic sites on Al₂O₃ seems to be one of the factors in surface acidity and basicity of metal oxide is important for controlling the dispersion state and the surface valence state of Pt particles. For example, Nagai et al. [12] reported that Pt in Pt/ceria-based oxide does not sinter after aging treatment at 800 °C in air because of the formation of Pt—O—Ce bonds (*i.e.*, the Pt-oxide-support interaction) which act as an anchor for Pt particles on ceria-based oxides. They also found that particle size of Pt supported on various oxides after aging decreases with the increase in the electron density of oxygen, which corresponds to basicity, in the oxide support. Yoshida et al. [7,13] investigated the valence state of Pt supported on various metal oxides by Pt L_{II}- and L_{III}-edge XANES, and found that Pt on the acidic support materials was less oxidized than that on the basic support material in the oxidizing atmosphere. Therefore, the modification of metal oxide to control the surface acidity and basicity is key technology for improving the performance of supported Pt catalysts. In the present study, Y-stabilized ZrO_2 was employed as support for Pt catalysts. Since Y_2O_3 is a metal oxide whose surface exhibits basic properties [14], the surface acidity and basicity of ZrO_2 are expected to be modified by introducing Y as the dopant. In addition, the thermal stability of ZrO_2 can be improved by Y additive determining the catalytic activity of Pt/Al₂O₃. Pt/Al₂O₃ with the Pt surface in the metallic state was more active than with the surface in the cationic state. Surface acidity and basicity of metal oxide is important for con- ^{*} Corresponding author. Tel.: +81 572 27 9964; fax: +81 572 27 6812. E-mail address: haneda.masaaki@nitech.ac.jp (M. Haneda). [15], resulting in sintering inhibition of Pt. We investigated the effect of Y-modification of ZrO₂ on the catalytic performance of Pt for the total oxidation of *n*-butane. Our interest in the use of *n*-butane oxidation comes from the fact that *n*-butane is one of the non-combustible saturated hydrocarbons included in automotive exhaust and thus *n*-butane oxidation has attracted attention [16–21]. Various catalyst characterizations were performed to examine the possible factors directly affecting the catalytic performance of Pt catalyst supported on Y-stabilized ZrO₂. #### 2. Experimental #### 2.1. Catalyst preparation ZrO₂ (TZ-0, $14\,\mathrm{m^2\,g^{-1}}$) and Y-stabilized ZrO₂ (Y-ZrO₂) with different Y contents (TZ-2Y, Y=2 mol.%, $16\,\mathrm{m^2\,g^{-1}}$ and TZ-8Y, Y=8 mol.%, $16\,\mathrm{m^2\,g^{-1}}$) supplied from Tosoh Corporation were used as the support for catalyst preparation. Pt/ZrO₂ and Pt/Y-ZrO₂ catalysts were prepared by impregnation of ZrO₂ and Y-stabilized ZrO₂ with a solution of Pt(NO₂)₂(NH₃)₂ (Tanaka Precious Metals, Pt concentration = 4.595 wt.%), respectively, followed by drying and calcination at 500 °C for 5 h in air. Catalyst samples were further calcined at 600, 700, 800 and 900 °C for 5 h in air. The loading of Pt was fixed at 1 wt.%. The samples are expressed as Pt/ZrO₂-x or Pt/nY-ZrO₂-x, where x and n are the catalyst calcination temperature and the Y content, respectively. #### 2.2. Activity tests The catalytic activity was evaluated using a fixed-bed continuous flow reactor. A reaction gas mixture containing $n\text{-}C_4H_{10}$ (2000 ppmC) and O_2 (5%) diluted in He as the balance gas was fed through a catalyst (0.1 g) that had been pretreated in situ in a flow of 5% H_2/He at 400 °C for 1 h at a rate of 100 cm³ min⁻¹. The activity was measured while increasing the temperature from 100 to 600 °C at a rate of 5 °C min⁻¹. The effluent gas was analyzed by an online gas chromatograph (Shimadzu GC-2014ATF) equipped with a Molecular Sieve 13X column (for the analysis of O_2 and O_2), a Porapak QS column (for the analysis of O_2) and 25% DC-200 on a Shimalite column (for the analysis of O_1). In the present study, no formation of O_2 0 was observed. #### 2.3. Catalyst characterization The crystal structure of the samples was identified by XRD (Rigaku MiniFlexII) measurements using Cu K α radiation at 30 kV and 15 mA. The dispersion of Pt, defined as the ratio of Pt_{surface} over Pt_{total}, was estimated by CO chemisorption at room temperature using a dynamic pulse adsorption apparatus (Ohkura Riken, BP-1), where the sample was first reduced with H₂ at 400 °C for 1 h and then cooled to room temperature in flowing He. Direct observation of Pt particles by TEM was performed with a JEM-2100 (JEOL) operating at an acceleration voltage of 200 kV. FT-IR spectra of adsorbed CO, as a probe molecule, were taken with a Nicolet 6700 FT-IR spectrometer at a resolution of $4\,\mathrm{cm}^{-1}$ in a flow of 0.5% CO/He at 50 °C, where a self-supporting sample disk of about $14\,\mathrm{mg\,cm}^{-2}$ placed in an IR cell with CaF2 windows was pretreated at 400 °C in a flow of 5% H2/He and then cooled to 50 °C in flowing He. Temperature-programmed desorption of ammonia (NH $_3$ -TPD) and CO $_2$ (CO $_2$ -TPD) was performed using a BELCAT (Bel Japan Inc.) to estimate the acidity and basicity of the supports, respectively. Each catalyst sample was pretreated in a flow of He at 600 °C. After cooling to $100\,^{\circ}$ C in flowing He, ammonia adsorption was carried out by passing a gas mixture of 0.5% NH $_3$ /He through the sample bed at $100\,^{\circ}$ C for 1 h. On the other hand, CO $_2$ adsorption was carried out **Fig. 1.** XRD patterns of (a) ZrO_2 , (b) $2Y-ZrO_2$ and (c) $8Y-ZrO_2$: (\blacktriangle) for ZrO_2 (monoclinic) and (\bigcirc) for ZrO_2 (tetragonal and/or cubic). by passing a gas mixture of 0.5% CO₂/He through the sample bed at $50\,^{\circ}$ C for 1 h. After the adsorption gas was purged with He to remove physically adsorbed ammonia and CO₂ at each adsorption temperature, NH₃-TPD and CO₂-TPD measurements were carried out up to $600\,^{\circ}$ C at a heating rate of $10\,^{\circ}$ C min⁻¹ in flowing He at a flow rate of $60\,\mathrm{cm}^3$ min⁻¹. A quadrupole mass spectrometer (M-201QA-TDM, Canon Anelva) was used to analyze the desorbed ammonia and CO₂. #### 3. Results and discussion #### 3.1. Physical properties of support Fig. 1 shows the XRD patterns of ZrO_2 and $Y-ZrO_2$ with different Y contents. It appears that the crystal phase of ZrO_2 is totally different depending on the Y content. ZrO_2 showed distinct XRD peaks indexed to a monoclinic phase (Fig. 1(a)). In accordance with previous reports [22,23], $8Y-ZrO_2$ exhibited a cubic phase (Fig. 1(c)). This suggests the formation of $Y_2O_3-ZrO_2$ solid solution in which Y^{3+} ions are completely incorporated into the ZrO_2 lattice. On the other hand, $ZY-ZrO_2$ was found to have a mixture of monoclinic and tetragonal phases (Fig. 1(b)), suggesting the coexistence of thermodynamically metastable and stable phases. li et al. [24] reported that Y cations in 3 mol.% Y-stabilized ZrO₂ (TZ-3Y) segregate to the surface of the tetragonal particle. This leads us to consider that the surface properties of ZrO₂ are significantly different depending on the Y content. The surface acidity and basicity of Y_2O_3 –ZrO₂ composite oxides have been studied by many researchers. For example, Li et al. [25] reported that the amount of acidic and basic sites largely decreased when 2.5 mol.% Y_2O_3 was doped into ZrO₂ compared with that over pure ZrO₂. Further increase in Y_2O_3 content slightly increased the amount of acidic sites while decreasing the amount of basic sites. On the other hand, Viinikainen et al. [26] reported that the total amount and strength of both acidic and basic sites on 5 mol.% Y_2O_3 –ZrO₂ is larger than that on ZrO₂. The surface acidity and basicity of Y_2O_3 –ZrO₂ composite oxides could be dependent on various factors such as Y content, crystal structure, crystallinity and so forth. In order to evaluate the surface acidity and basicity of ZrO_2 and $Y-ZrO_2$ with different Y contents, NH_3 -TPD and CO_2 -TPD measurements were carried out, respectively. Fig. 2 shows the NH_3 -TPD profiles of ZrO_2 and $Y-ZrO_2$. ZrO_2 gave two broad NH_3 desorption peaks at 185 and 310 °C (Fig. 2(a)). When 2 mol.% Y_2O_3 was added into ZrO_2 (Fig. 2(b)), a slight increase in the amount of NH_3 desorption at 310 °C and a slight shift of desorption peak to a higher ### Download English Version: ## https://daneshyari.com/en/article/55093 Download Persian Version: https://daneshyari.com/article/55093 <u>Daneshyari.com</u>