
Achievement of minimized combinatorial test suite for
configuration-aware software functional testing using the Cuckoo
Search algorithm

Bestoun S. Ahmed a,⇑, Taib Sh. Abdulsamad b, Moayad Y. Potrus a

a Software Engineering Department, Engineering College, Salahaddin University-Hawler (SUH), 44002, Erbil – Kurdistan
b Statistic & Computer Department, College Of Commerce, University of Sulaimani, SulaimaniNwe Street 27, Zone 209, Sulaimania, Kurdistan

a r t i c l e i n f o

Article history:
Received 17 January 2015
Received in revised form 16 May 2015
Accepted 16 May 2015
Available online 21 May 2015

Keywords:
Combinatorial testing
Search-based software testing
Cuckoo Search
Covering array
Test generation tools
Mutation testing

a b s t r a c t

Context: Software has become an innovative solution nowadays for many applications and methods in
science and engineering. Ensuring the quality and correctness of software is challenging because each
program has different configurations and input domains. To ensure the quality of software, all possible
configurations and input combinations need to be evaluated against their expected outputs. However,
this exhaustive test is impractical because of time and resource constraints due to the large domain of
input and configurations. Thus, different sampling techniques have been used to sample these input
domains and configurations.
Objective: Combinatorial testing can be used to effectively detect faults in software-under-test. This tech-
nique uses combinatorial optimization concepts to systematically minimize the number of test cases by
considering the combinations of inputs. This paper proposes a new strategy to generate combinatorial
test suite by using Cuckoo Search concepts.
Method: Cuckoo Search is used in the design and implementation of a strategy to construct optimized
combinatorial sets. The strategy consists of different algorithms for construction. These algorithms are
combined to serve the Cuckoo Search.
Results: The efficiency and performance of the new technique were proven through different experiment
sets. The effectiveness of the strategy is assessed by applying the generated test suites on a real-world
case study for the purpose of functional testing.
Conclusion: Results show that the generated test suites can detect faults effectively. In addition, the strat-
egy also opens a new direction for the application of Cuckoo Search in the context of software
engineering.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Testing is the process of evaluating the functionality of a system
to identify any gaps, errors, missing requirements, and other fea-
tures. This process ensures the sound operation of software [1].
In general, testing is mainly classified as either functional and
structural [2,3]. The former method is referred to as ‘‘black box
testing,’’ and the latter is called ‘‘white box testing’’ [2–4].

In functional testing, the tester ignores the internal structure of
the system-under-test and focuses only on the inputs and expected
outputs. The technique serves the overall functionality validation
of the system, thereby identifying both valid and invalid inputs

from the customer’s point of view. Structural testing is used to
detect logical errors in software [3]. The tester needs to gather
information on the internal structure of the system-under-test
and to use information with regard to the data structures and algo-
rithms surrounded by the code [5].

Unlike in structural testing, creating a data set (i.e., test data
generation) is an important task in functional testing because of
the lack of information about the internal design. Previous studies
have reported many test data generation methods. In general,
these methods use the available information in software require-
ment specifications, which provide knowledge about input
requirements. The tester considers all possible input domains
when selecting test cases for the software-under-test. However,
considering all inputs is impossible in many practical applications
because of time and resource constraints. Hence, the role of test
design techniques is highly important.

http://dx.doi.org/10.1016/j.infsof.2015.05.005
0950-5849/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: bestoon82@gmail.com (B.S. Ahmed), Taib.shamsadin@yahoo.

com (T.Sh. Abdulsamad), moayad_75@yahoo.com (M.Y. Potrus).

Information and Software Technology 66 (2015) 13–29

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.05.005&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2015.05.005
mailto:bestoon82@gmail.com
mailto:Taib.shamsadin@yahoo.com
mailto:Taib.shamsadin@yahoo.com
mailto:moayad_75@yahoo.com
http://dx.doi.org/10.1016/j.infsof.2015.05.005
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

A test design technique is used to systematically select test
cases through a specific sampling mechanism. This procedure opti-
mizes the number of test cases to obtain an optimum test suite,
thereby eliminating the time and cost of the testing phase in soft-
ware development. Different studies proposed various functional
test design techniques, such as equivalence class partitioning,
boundary value analysis, and cause and effect analysis via decision
tables [3,6]. In general, the tester aims to use more than one testing
method because different faults may be detected when different
testing methods are used. However, with the vast growth and
development of software systems and their configurations, the
probability of the occurrence of faults has increased because of
the combinations of these configurations, particularly for highly
configurable software systems. Traditional test design techniques
are useful for fault discovery and prevention. However, such tech-
niques cannot detect faults that are caused by the combinations of
input components and configurations [7]. Considering all configu-
ration combinations leads to exhaustive testing, which is impossi-
ble because of time and resource constraints [2,8,9].

Strategies have been developed in the last 20 years to solve the
above problem. Among these strategies, combinatorial testing
strategies are the most effective in designing test cases for this
problem. These strategies facilitate search and generate a set of
tests, thereby forming a complete test suite that covers the
required combinations in accordance with the strength or degree
of combination. This degree starts from two (i.e., d = 2, where d is
the degree of combinations).

Considering all combinations in a minimized test suite is a hard
computational optimization problem [2,10–12], because searching
for the optimal set is an NP-hard problem [2,11–15]. Hence,
searching for an optimum set of test cases can be a difficult task,
and finding a unified strategy that generates optimum results is
challenging. Three approaches, namely, computational algorithms,
mathematical construction, and nature-inspired metaheuristic
algorithms, can be used to solve this problem efficiently and find
a near-optimal solution [16].

Using nature-inspired metaheuristic algorithms can generate
more efficient results than other approaches [17,18]. This approach
is more flexible than others because it can construct combinatorial
sets with different input factors and levels. Hence, its outcome is
more applicable because most real-world systems have different
input factors and levels. Techniques that have been used to con-
struct combinatorial sets include simulated annealing (SA) [7],
tabu search (TS) [19], genetic algorithm (GA) [20], ant colony algo-
rithm (ACA) [20,21], and particle swarm optimization (PSO)
[22,23].

SA generates promising results in cases with small parameters
and values as well as a small combination degree. However, it
could not exceed certain parameters and values, and is unable to
obtain results for combination degrees greater than three [20,24].
PSO can compete with other strategies in most cases even when
the combination degree exceeds three [25,26]. However, PSO suf-
fers from the effect of parameter tuning on its performance and
from problems with local minima. Recent studies have discovered
new nature-inspired metaheuristic algorithms that can produce
better results than the traditional PSO algorithm for different
applications.

Cuckoo Search (CS) [27] is one of the novel nature-inspired
algorithms that have been proposed recently to solve complex
optimization problems. CS can be used to efficiently solve global
optimization problems [28] as well as NP-hard problems that can-
not be solved by exact solution methods [29]. The most powerful
feature of CS is its use of Lévy flights to update the search space
for generating new candidate solutions. This mechanism allows
the candidate solutions to be modified by applying many small
changes during the iteration of the algorithm. This in turn makes

a compromised relationship between exploration and exploitation
which enhance the search capability [30]. To this end, recent stud-
ies proved that CS is potentially far more efficient than GA and PSO
[31]. Such feature have motivated the use of CS to solve different
kinds engineering problems such as scheduling problems [32], dis-
tribution networks [33], thermodynamics [34], and steel frame
design [35].

The current paper presents the design and implementation of a
strategy to construct optimized combinatorial sets using CS.
Besides the Lévy flights, another advantage of CS over other coun-
terpart nature-inspired algorithms such as PSO and GA, is that it
does not have many parameters for tuning. Evidences showed that
the generated results were independent of the value of the tuning
parameters [27,31].

The rest of the paper is organized as follows: Section 2 presents
the mathematical notations, definitions, and theories behind the
combinatorial testing. Section 3 illustrates a practical model of
the problem using a real-world case study. Section 4 summarizes
recent related works and reviews in the existing literature.
Section 5 discusses the methodology of the research and imple-
mentation. The section reviews CS in detail and discusses the
design and implementation of the strategy. In addition, it shows
how the combinations are generated and describes in detail the
algorithms that are used within the proposed strategy. Section 6
contains the evaluation results on the efficiency, performance,
and effectiveness of CS. Section 7 presents threats to validity for
the experiments and the case study. Finally, Section 8 concludes
the paper.

2. Covering array mathematical preliminaries and notations

One future move toward combinatorial testing involves the use
of a sampling strategy derived from a mathematical object called
covering array (CA) [36]. In combinatorial testing, CA can be simply
demonstrated by a table with rows and columns that contain the
designed test cases; each row is a test case, and each column is
an input factor for the software-under-test.

This mathematical object originates essentially from another
object called orthogonal array (OA) [12]. An orthogonal array
OAk(N; d, k, v) is an N � k array in which for every N � d
sub-array, each d-tuple occurs exactly k times, where k = N/vd. In
this equation, d is the combination strength; k is the number of fac-
tors (k P d), and v is the number of symbols or levels associated
with each factor. To consider all combinations, each d-tuple must
occur at least once in the final test suite [37]. When each d-tuple
occurs exactly one time, then k = 1, and it can be excluded from
the mathematical notation, i.e., OA(N; d, k, v). As an example, the
orthogonal array OA(9; 2, 4, 3) that contains three levels of value
(v), with a combination degree (d) of two, and four factors (k)
can be generated by nine rows. Fig. 1(a) illustrates the arrange-
ment of this array.

OA (9; 2, 4, 3) CA (9; 2, 4, 3) MCA (9; 2, 4, 32 22)
k1 k2 k3 k4 k1 k2 k3 k4 k1 k2 k3 k4

1 1 1 1 1 3 3 3 2 1 1 2
2 2 2 1 3 2 3 1 2 2 2 1
3 3 3 1 1 1 2 1 3 3 2 2
1 2 3 2 1 2 1 2 1 3 1 1
2 3 1 2 3 1 1 3 1 1 2 1
3 1 2 2 2 1 3 2 1 2 1 2
1 3 2 3 3 3 2 2 3 2 1 1
2 1 3 3 2 3 1 1 3 1 1 1
3 2 1 3 2 2 2 3 2 3 1 2

(a) (b) (c)

Fig. 1. Examples illustrating OA, CA, and MCA.

14 B.S. Ahmed et al. / Information and Software Technology 66 (2015) 13–29

Download English Version:

https://daneshyari.com/en/article/550934

Download Persian Version:

https://daneshyari.com/article/550934

Daneshyari.com

https://daneshyari.com/en/article/550934
https://daneshyari.com/article/550934
https://daneshyari.com

