Information and Software Technology 66 (2015) 40-57

INFORMATION

SOFTWARE
TECHNOLOGY

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Goal-oriented dynamic test generation

@ CrossMark

TheAnh Do?, Siau-Cheng Khoo®, Alvis Cheuk Ming Fong?, Russel Pears **, Tho Thanh Quan°®

2 Auckland University of Technology, 2-14 Wakefield St, Auckland 1010, New Zealand
b National University of Singapore, COM1, 13 Computing Drive, Singapore 117417, Singapore
€Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet St, Ho Chi Minh City, Viet Nam

ARTICLE INFO ABSTRACT

Article history:

Received 5 July 2014

Received in revised form 22 April 2015
Accepted 30 May 2015

Available online 6 June 2015

Context: Memory safety errors such as buffer overflow vulnerabilities are one of the most serious classes
of security threats. Detecting and removing such security errors are important tasks of software testing
for improving the quality and reliability of software in practice.

Objective: This paper presents a goal-oriented testing approach for effectively and efficiently exploring
security vulnerability errors. A goal is a potential safety violation and the testing approach is to automat-
ically generate test inputs to uncover the violation.

Method: We use type inference analysis to diagnose potential safety violations and dynamic symbolic
execution to perform test input generation. A major challenge facing dynamic symbolic execution in such
application is the combinatorial explosion of the path space. To address this fundamental scalability
issue, we employ data dependence analysis to identify a root cause leading to the execution of the goal
and propose a path exploration algorithm to guide dynamic symbolic execution for effectively discover-
ing the goal.

Results: To evaluate the effectiveness of our proposed approach, we conducted experiments against 23
buffer overflow vulnerabilities. We observed a significant improvement of our proposed algorithm over
two widely adopted search algorithms. Specifically, our algorithm discovered security vulnerability
errors within a matter of a few seconds, whereas the two baseline algorithms failed even after 30 min
of testing on a number of test subjects.

Conclusion: The experimental results highlight the potential of utilizing data dependence analysis to
address the combinatorial path space explosion issue faced by dynamic symbolic execution for effective
security testing.

Keywords:

Buffer overflow vulnerabilities
Dynamic symbolic execution

Data and control dependence analysis
Type inference analysis

© 2015 Published by Elsevier B.V.

1. Introduction Among these proposed techniques, dynamic symbolic execu-

tion has been gaining a considerable amount of attention in the

Automated software testing is increasingly being seen as an
important means for improving the quality and reliability of soft-
ware in industry. It mitigates the hardship of manual testing,
which is labor-intensive and error-prone, and alleviates the expen-
sive cost of software testing, which often accounts for around half
of the total software development costs. One way of enhancing
automated software testing is to automate the process of test input
generation. Over the last three decades, considerable research
effort has attempted to achieve this goal, ranging from random
testing [21], symbolic execution [39], search-based testing [28],
the chaining approach [20, 37], to dynamic symbolic execution
[9, 23, 45].

* Corresponding author. Tel.: +64 9 921 9999x5344.
E-mail address: russel.pears@aut.ac.nz (R. Pears).

http://dx.doi.org/10.1016/j.infsof.2015.05.007
0950-5849/© 2015 Published by Elsevier B.V.

current industrial practice [11]. Through the power of the underly-
ing constraint solver, it intertwines the strengths of random testing
and symbolic execution to achieve the scalability and high preci-
sion of dynamic analysis. One of the most important insights of
dynamic symbolic execution is the ability to reduce the execution
into a mix of concrete and symbolic execution when facing compli-
cated pieces of code, which are the real obstacle to classical sym-
bolic execution. The technique has been applied to the testing of
many industrial software systems and uncovered “million-dollar”
bugs [5, 26]. While effective, the fundamental scalability issue lim-
iting the capability of dynamic symbolic execution is the combina-
torial explosion of the path space, which can be extremely huge or
often infinite in sizable and complex programs. This phenomenon
has been significantly highlighted in several research studies:

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.05.007&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2015.05.007
mailto:russel.pears@aut.ac.nz
http://dx.doi.org/10.1016/j.infsof.2015.05.007
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

T. Do et al./Information and Software Technology 66 (2015) 40-57 41

... path explosion represents one of the biggest challenges fac-
ing symbolic execution, and given a fixed time budget, it is crit-
ical to explore the most relevant paths first. [14]

A significant scalability challenge for symbolic execution is how
to handle the exponential number of paths in the code. [11]

In theory, systematic dynamic test generation can lead to full
program path coverage, i.e., program verification. In practice,
however, the search is typically incomplete both because the
number of execution paths in the program under test is huge
... [25]

The impact of this particular limitation of dynamic symbolic
execution on the efficiency of software testing is significant. If
dynamic symbolic execution is carried out in a way that exhaus-
tively and systematically explores all feasible paths of the program
under test, then it often ends up with only small regions of the
code explored. Consequently, in practice the objective of achieving
high structural coverage of software testing is hard to realize using
dynamic symbolic execution. More importantly, the capability of
detecting errors can be limited since the code harboring errors
may not even be exercised. The CheckArray function in Fig. 1
could be a good example to illustrate this phenomenon.

It takes as input an array of 20 elements and checks if all ele-
ments equal 25. This yields 2%° (=1,048,576) paths with just 20
symbolic predicates. In practice, this path space explosion problem
becomes worse as the input of programs can be a stream of data
with too large (or unknown) size [24]. In the attempt to “explore
the most relevant paths first” [14], a major challenge arising from
path exploration is among the far too many program paths, how
to mine for appropriate paths for quickly achieving desired testing
criteria. Consider the execution of branch (5, 6) in CheckArray
function, for example. The first observation is that this branch does
not form any symbolic predicate as its conditional expression
depends on the locally declared variable success; any attempt
to flip its alternative branch to trigger its execution will fail. The
second observation is that among the 1,048,576 paths, there is only
one path that executes all “else” branches at the conditional state-
ment 3 to propagate the desired true value of success down to
statement 5 to execute branch (5, 6). These observations demon-
strate difficulties in developing path exploration algorithms where
the execution of code does not depend directly on the symbolic
input. This is widely adopted in programming practices, however.
For instance, Cadar et al. [12], when testing a number of
medium-sized applications, found that less than 42% of the exe-
cuted statements depend on the symbolic input. Independently,

Binkley et al. [6] studied the testability transformation problem
in search-based testing, and observed that the variety usage of
Boolean-typed variables complicates test input generation and
degrades program testability. Of the 23 buffer overflow vulnerabil-
ities in our experimental study, none depends directly on the sym-
bolic input.

To cope with such challenges, we present in this paper an
approach to improve the dynamic symbolic execution-based path
exploration process in the context of goal-oriented testing. Stated
formally:

Given a test goal g (e.g. statement or branch) in the program P, the
goal is to find a test input t with which g is executed.

To begin with, we utilized the chaining approach [20, 37] to
form a search mechanism. Particularly, given a test goal to explore,
the chaining approach first performs data dependence analysis to
identify statements that affect the execution of the test goal, and
then uses these statements to create sequences of events that are
to be executed prior to the execution of the test goal. The advan-
tage of doing this is twofold: (1) it precisely focuses on the cause
of getting the test goal to be executed and (2) it slices away code
segments that are irrelevant to the execution of the test goal.

Next, we propose a search algorithm, named Guider, which is
driven by the chaining mechanism and utilizes dynamic symbolic
execution to perform path exploration for exploring the test goal.
Guider distinguishes itself from existing search algorithms in three
major aspects: (1) it mitigates the path explosion problem by cen-
tralizing on data dependences which truly affect the executability
of the test goal; (2) it is able to refine path exploration when the
local search space is saturated; and (3) it determines control
dependences on the fly and exploits the static program structure
to optimize path exploration.

Lastly, we develop a dynamic symbolic execution-based buffer
overflow testing framework, named Sebo. Sebo works in two
phases. In the first phase, it uses Deputy [13]—an advanced type
system for pointers, to diagnose potential runtime violations on
buffer operations in the program under test. In the second phase,
it uses Crest [7]—an extensible symbolic execution engine, to per-
form dynamic symbolic execution for test input generation.

We implemented our proposed algorithm—Guider, in the Sebo
framework and conducted experiments against 23 buffer overflow
vulnerabilities to evaluate its effectiveness. We observed a signifi-
cant improvement of Guider over two widely adopted search algo-
rithms in dealing with the path explosion problem to uncover
buffer overflow vulnerabilities.

Node typedef enum {false, true} bool;
#define N 20
(s) bool CheckArray (int A[N]) {
int 1i;
(1) bool success = true;
(2) for (i = 0; 1 < N; i ++) {
(3) if (A[1] != 25)
(4) success = false;
}
(5) if (success) {
(6) // target
}
(7) return success;
(e) }

Fig. 1. The function CheckArray checks if all elements of an input array equal 25. This example is used to illustrate the path explosion problem facing dynamic symbolic
execution and the difficulty of developing path exploration algorithms in which the code under test does not directly depend on the symbolic input. It is also used to illustrate

the search mechanism in the chaining approach.

Download English Version:

https://daneshyari.com/en/article/550936

Download Persian Version:

https://daneshyari.com/article/550936

Daneshyari.com

https://daneshyari.com/en/article/550936
https://daneshyari.com/article/550936
https://daneshyari.com

