Information and Software Technology 66 (2015) 58-72

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Quantitative analysis of fault density in design patterns: An empirical
study

@ CrossMark

Mahmoud O. Elish *, Mawal A. Mohammed

Information and Computer Science Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

ARTICLE INFO ABSTRACT

Article history:

Received 31 October 2014

Received in revised form 24 May 2015
Accepted 26 May 2015

Available online 1 June 2015

Context: There are many claimed advantages for the use of design patterns and their impact on software
quality. However, there is no enough empirical evidence that supports these claimed benefits and some
studies have found contrary results.

Objective: This empirical study aims to quantitatively measure and compare the fault density of motifs of
design patterns in object-oriented systems at different levels: design level, category level, motif level, and
role level.

Method: An empirical study was conducted that involved five open-source software systems. Data were
analyzed using appropriate statistical test of significance differences.

Results: There is no consistent difference in fault density between classes that participate in design
motifs and non-participant classes. However, classes that participate in structural design motifs tend
to be less fault-dense. For creational design motifs, it was found that there is no clear tendency for the
difference in fault density. For behavioral design motifs, it was found that there is no significant differ-
ence between participant classes and non-participant classes. We observed associations between five
design motifs (Builder, Factory Method, Adapter, Composite and Decorator) and fault density. At the role
level, we found that only one pair of roles (Adapter vs. Client) shows a significant difference in fault den-
sity.

Conclusion: There is no clear tendency for the difference in fault density between participant and
non-participant classes in design motifs. However, structural design motifs have a negative association
with fault density. The Builder design motif has a positive association with fault density whilst the
Factory Method, Adapter, Composite, and Decorator design motifs have negative associations with fault
density. Classes that participate in the Adapter role are less dense in faults than classes that participate in
the Client role.

Keywords:

Design patterns
Software quality
Fault density
Quantitative analysis

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Design Patterns (DPs) are generic solutions to common design
problems. The objective of cataloging these solutions, including
their intent, motivation, applicability, structure, participants, con-
sequences, etc. is to make them reusable. Gamma et al. [14] classi-
fied DPs (known as GoF DPs) into three categories: creational
patterns, structural patterns, and behavioral patterns. Creational
patterns are concerned with creating collections of objects in flex-
ible ways. Structural patterns are concerned with representing col-
lections of related objects. Behavioral patterns are concerned with
capturing behavior among collections of objects. There are 23 GoF

* Corresponding author. Tel.: +966 13 8601150.
E-mail addresses: elish@kfupm.edu.sa (M.O. Elish), mawal.mohammed@yahoo.
com (M.A. Mohammed).

http://dx.doi.org/10.1016/j.infsof.2015.05.006
0950-5849/© 2015 Elsevier B.V. All rights reserved.

DPs: five creational patterns, seven structural patterns, and 11
behavioral patterns. Design motifs refer to the solution parts of
DPs that are disseminated in the source code of the systems in
which DPs are applied [28,39]. In a design motif, there is one or
more participant classes that play different roles.

Since their introduction, DPs have attracted the attention of
software researchers and practitioners due to the claimed advan-
tages of their application. They are claimed to improve program-
mers’ productivity, promote best design practices, help novice
designers to acquire more experience in software design, and make
communication easier among team members. Despite these
claims, the impact of DPs on software quality is still a debatable
issue. Zhang and Budgen [49] conducted a survey of experienced
users’ perceptions about DPs to determine which patterns do
expert pattern users consider useful or not useful for software
development and maintenance. They found that only three


http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.05.006&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2015.05.006
mailto:elish@kfupm.edu.sa
mailto:mawal.mohammed@yahoo.com
mailto:mawal.mohammed@yahoo.com
http://dx.doi.org/10.1016/j.infsof.2015.05.006
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

M.O. Elish, M.A. Mohammed / Information and Software Technology 66 (2015) 58-72 59

patterns (Observer, Composite, and Abstract Factory) were widely
regarded as valuable. Zhang and Budgen [50] also conducted a
mapping study to determine the scale and extent to which empir-
ical studies have been undertaken to evaluate the effectiveness of
DPs. They concluded that DPs have been subjected to limited
empirical evaluation and that more empirical evidence is very
much needed. The need for further investigations on the impact
of DPs on different software quality attributes are justifiable by
the following reasons: (i) there is no consensus among the con-
ducted studies in the literature, as discussed in the following sec-
tion, on the impact of DPs on the different quality attributes; (ii)
limited number of quality attributes have been addressed; (iii)
not all DPs have been addressed; and (iv) not all levels (i.e., design
level, category level, motif level and role level) have been
evaluated.

One of the common arguments for the applications of DPs often
relate to reducing the number of software faults [23,47]. The fault
density of an object-oriented class is a measure of the number of
confirmed and detected faults in the class divided by its size.
Class size is usually positively correlated to the number of faults,
which known as the confounding effect of class size [14]. Size mea-
sures are often used to normalize fault counts when evaluating
quality, as in measures of fault density [30]. The main objective
of this study is to quantitatively measure and compare the fault
density of design motifs in object-oriented systems. For this pur-
pose, we conducted an empirical study that:

e Measures and compares the fault density of participant versus
non-participant classes in the design motifs.

e Measures and compares the fault density of participant classes
across the different categories of design motifs in the GoF’s book
(creational, structural, and behavioral).

e Measures and compares the fault density of participant classes
across design motifs.

e Measures and compares the fault density of participant classes
across the different roles in each design motif.

Quantitative analysis of fault density in design motifs provides
software developers with valuable knowledge of which motifs
require special attention in their implementation and testing.
This knowledge serves as recommendations and guidelines for
software designers to effectively apply design motifs which, in
turns, help in producing better designs. Moreover, software testers
can utilize this knowledge to focus on the potentially troublesome
parts of designs that require more attention. Therefore, software
testers can write more useful test cases that address real design
issues.

The rest of this paper is organized as follows. Section 2 summa-
rizes the related work. Section 3 discusses the empirical study
setup. Section 4 presents the results of the empirical study, which
are then analyzed and discussed in Section 5. Section 6 discusses
threats to validity. Finally, Section 7 provides concluding remarks
and directions for future work.

2. Related work

There are many studies in the literature that have explored the
relationship between DPs and software quality attributes. A com-
prehensive literature survey was conducted by Ali and Elish [2]
on the impact of DPs on quality attributes. Only four quality attri-
butes have been investigated in the literature: maintainability,
change-proneness, performance and energy consumption, and
fault-proneness.

Prechelt et al. [42] conducted a controlled experiment to study
the relationship between DPs and maintainability. They found that

the use of DPs improves software maintainability. Vokac et al. [48]
conducted a replication of this experiment. They found that differ-
ent patterns have different impact on maintainability. Another four
replications for this experiment were conducted in several univer-
sities [42]. In each replication, different findings on the impact of
DPs on maintainability were reported: negative impacts
[27,31,41] and no impact [36]. Garzas et al. [16] investigated the
impact of three different DPs on maintainability as well. In their
experiment, maintainability was measured in terms of under-
standability and modifiability. They found that DPs make design
diagrams more difficult to understand and consequently require
more time to modify. Finally, Hegedus et al. [25] performed a case
study on a software system to evaluate the impact of DPs on main-
tainability. The reported findings show an improvement in main-
tainability with the use of DPs.

Aversano et al. [6] conducted a case study to address the impact
of DPs on change-proneness. They found that the impact of DPs on
change-proneness depends on the role of DPs in the functionality
of the system (i.e., if DPs are involved in the implementation of
major functionalities of the system, they will be subject to more
changes). Bieman et al. [8] conducted another study to evaluate
the impact of DPs on change-proneness at the class-level. They
found that participant classes in design motifs are more
change-prone than non-participant classes. Gatrell et al. [18]
conducted a case study to evaluate the change-proneness of
participant versus non-participant classes as well. They found that
some DPs are associated with more changes than others. Posnett
et al. [40] studied the influence of DPs roles on change-
proneness. They found that the observed associations between
change-proneness and the roles in patterns might be due to the
sizes of the classes playing those roles. Penta et al. [39] reported
an empirical study that investigated the relationship between
DPs roles and the frequency/kind of changes. The results confirmed
the intuitive behavior about changeability of many roles. Khomh
et al. [28] conducted an empirical descriptive and analytic study
of classes playing zero, one, or two roles in six different DPs.
They found a significant increase in many internal metric values
for classes playing two roles. They also found a significant increase
in the frequencies and the number of changes of classes playing
two roles.

Rudzki [43] conducted a study to evaluate the impact of two
DPs, Command and Facade, on performance. He found that
Facade performed better than Command. Afacan [1] performed
an experiment to study the impact of State design pattern on mem-
ory usage and execution time. He found that a design with the
State pattern consumes more resources than a design without
DPs. However, the DP solution leads to clearer system architecture
that can help improve other quality attributes. Some studies have
investigated the energy consumption of DPs [9,33,44]. Bunse and
Stiemer [9] presented a case study that examined the impact of
DPs application onto a systems energy consumption. They found
that the Decorator pattern has a negative impact on the energy
needs of an app. Sahin et al. [44] presented a preliminary empirical
study that investigates the impacts on energy usage of applying
DPs. They found that applying DPs can both increase and decrease
the amount of energy used by an application, and also DPs within a
category do not impact energy usage in similar ways. Litke et al.
[33] observed that the use of DPs does not necessarily impose a sig-
nificant penalty on power consumption.

The relationship between DPs and faults has been investigated
in three works. Vokac [47] investigated fault frequency (normal-
ized number of faults over time) in DPs. Five patterns were inves-
tigated in his study: Singleton, Template Method, Decorator,
Observer and Factory Method. He found that the DPs that are asso-
ciated with larger structures, such as Observer and Singleton, are
subject to more faults whereas Factory Method is loosely coupled



Download English Version:

https://daneshyari.com/en/article/550937

Download Persian Version:

https://daneshyari.com/article/550937

Daneshyari.com


https://daneshyari.com/en/article/550937
https://daneshyari.com/article/550937
https://daneshyari.com

