
Review

The roles of the Hippo pathway in cancer metastasis

Helena J. Janse van Rensburg, Xiaolong Yang ⁎
Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada

a b s t r a c ta r t i c l e i n f o

Article history:
Received 30 June 2016
Received in revised form 7 August 2016
Accepted 8 August 2016
Available online 9 August 2016

Cancermetastasis refers to the sequence of eventswhereby tumour cells detach from their primary tissue, invade
andmigrate to nearby vasculature, intravasate into circulation, survive in circulation and extravasate at a distant
site to establish a secondary tumour. Each step in this “metastatic cascade” is coordinated by complex molecular
events that remain only incompletely understood. Given that the vast majority of cancer fatalities occur due to
metastasis, there is an urgent need for an improved understanding of the specificmechanisms underlying cancer
metastasis and for the development of therapeutics targeting this lethal process.
The Hippo pathway is an emerging signaling pathway that plays important roles in development and disease. In
cancer cells, dysregulation of theHippopathwaydrivesmultiple aspects of tumour initiation andprogression. Re-
cent studies have uncovered a role for the Hippo pathway core components in promoting cancer metastasis. In
this review, we summarize the clinical and biochemical evidence implicating the Hippo pathway in metastasis.
Additionally, we describe themolecularmechanisms bywhich aberrant Hippo signaling promotesmetastasis. Fi-
nally, we highlight areas for future research.
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1. Introduction

1.1. Cancer metastasis

Cancer metastasis—the spread of tumour cells from a primary tissue
into distant secondary sites—represents a critical point in cancer treat-
ment and prognosis. For many patients, a diagnosis of metastatic cancer
renders conventional treatment modalities ineffective and changes
treatment goals from curative to non-curative (palliative). Indeed, the
majority of cancer fatalities happen as a consequence of metastasis [1,
2]. The poor prognosis associated with metastatic cancer is, in some
ways, a product of our incomplete understanding of the mechanisms
underlying metastasis such that no curative treatments exist for many
patients.

Metastasis is often conceptualized as a multi-step progression of tu-
mour cells detaching from their surrounding tissue, invading through
the local extracellularmatrix (ECM),migrating to lymph or blood vascu-
lature, intravasating into circulation, surviving in circulation and then
extravasating at a distant tissue to establish a secondary tumour. With
recent technological advances, this simplified metastatic cascade has
evolved into a more complete and sophisticated model of tumour cell
dissemination and colonization. For example, it is now widely recog-
nized that the tumour microenvironment and intratumoural heteroge-
neity contribute to the metastatic sequence [3,4].

There have been extensive efforts to understand metastasis at the
molecular level and to develop therapeutics specifically targeting key
regulators of metastasis. Numerous cellular pathways have been impli-
cated in cancer metastasis including Notch, Wnt and transforming
growth factor-β (TGF-β) signaling among others (reviewed in [5–7]).
Recently, the Hippo signaling pathway has been characterized as a cell
network mediating cancer metastasis. In this review, we summarize
the roles of Hippo signaling in promoting cancer metastasis. We de-
scribe the clinical evidence and studies of in vivo mouse models that
demonstrate how dysregulation of Hippo pathway core components in-
fluences metastasis. We then consider the precise mechanisms by
which Hippo signaling may promote metastasis. Specifically, we high-
light theHippo pathway's involvement in epithelial-mesenchymal tran-
sition (EMT), cell migration/invasion, vascular invasion, resistance to
anoikis and cancer stem cell (CSC) phenotypes. Finally, we describe po-
tential areas for future research.

1.2. The core Hippo pathway in Drosophila melanogaster and mammals

The foundingmember of theHippo signaling pathway, large tumour
suppressor (lats) or warts (wts), was originally identified in Drosophila.
In a genetic screen for genes involved in cell proliferation, loss of wts
led to increased proliferation and organ size [8,9]. Subsequent loss-of-
function genetic screens produced similar phenotypes, leading to the
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Fig. 1. Core Hippo pathway components in Drosophila melanogaster and mammals as summarized in Section 1.2. Arrows denote activation whereas blunted lines indicate inhibition.
Proteins that directly or indirectly regulate YAP/TAZ are included in the green (activators) and red (inhibitors) boxes. Regulators which affect YAP/TAZ activity through MST1/2 or
LATS1/2 are emphasized in bold font.
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