
On the usefulness of ownership metrics in open-source software
projects

Matthieu Foucault a,⇑, Cédric Teyton a, David Lo b, Xavier Blanc a, Jean-Rémy Falleri a

a University of Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France
b School of Information Systems, Singapore Management University, Singapore

a r t i c l e i n f o

Article history:
Received 1 September 2014
Received in revised form 15 January 2015
Accepted 30 January 2015
Available online 9 February 2015

Keywords:
Software engineering
Empirical study
Process metrics

a b s t r a c t

Context: Code ownership metrics were recently defined in order to distinguish major and minor
contributors of a software module, and to assess whether the ownership of such a module is strong or
shared between developers.
Objective: The relationship between these metrics and software quality was initially validated on
proprietary software projects. Our objective in this paper is to evaluate such relationship in open-source
software projects, and to compare these metrics to other code and process metrics.
Method: On a newly crafted dataset of seven open-source software projects, we perform, using inferential
statistics, an analysis of code ownership metrics and their relationship with software quality.
Results: We confirm the existence of a relationship between code ownership and software quality, but
the relative importance of ownership metrics in multiple linear regression models is low compared to
metrics such as the number of lines of code, the number of modifications performed over the last release,
or the number of developers of a module.
Conclusion: Although we do find a relationship between code ownership and software quality, the added
value of ownership metrics compared to other metrics is still to be proven.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Process metrics, which measure developer’s activity, were
shown to have a strong relationship with software quality and, to
be more useful than code metrics when it comes to defect predic-
tion [1]. Among process metrics, the ones introduced by Bird et al.
that measure code ownership (CO) are of a particular interest [2].
These metrics, called CO metrics in this paper, quantify the level
to which developers own modules of a software project, by mea-
suring the ratio of contributions they make to such modules. CO
metrics split developers of a module into two distinct groups:
major and minor developers, who perform more and less than 5%
of the contributions, respectively.

The usefulness of these metrics was validated on Microsoft soft-
ware projects, showing that they have a strong relationship with
the number of bugs of a module, and that adding code ownership
metrics to a regression model (with the number of bugs as the
dependent variable) improves its quality [2]. Bird et al. also
observed that the more minor developers contribute to a software

module, the more bugs it contains. A possible explanation comes
from the fact that minor developers have less knowledge of the
modules they contribute to, and therefore may introduce more
bugs. Moreover, Bird et al. also observed that for a given software
module two other metrics are related to its number of bugs: the
number of major developers, and the ratio of contributions pre-
formed by the main developer of a module to the total amount
of contributions on such module. Contrary to minor developers,
major developers have more insight on the modules they con-
tribute to, and therefore may introduce less bugs.

Such a finding has two main consequences. First, development
team should be reorganized with the objective to increase code
ownership by limiting the number of minor developers, or if it is
not possible, to have major developers reviewing the contributions
of the minor ones. Second, CO metrics should be used when pre-
dicting the number of bugs of software modules, as adding them
to a model significantly improves its quality.

As these results were observed solely on two Microsoft projects,
we therefore replicated the Bird et al. study but with open-source
software systems [3]. However, our replication, made on seven
open-source Java software projects, did not yield the same
observations. In particular, we did not observe any significant

http://dx.doi.org/10.1016/j.infsof.2015.01.013
0950-5849/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: mfoucaul@labri.fr (M. Foucault), cteyton@labri.fr (C. Teyton),

davidlo@smu.edu.sg (D. Lo), xblanc@labri.fr (X. Blanc), falleri@labri.fr (J.-R. Falleri).

Information and Software Technology 64 (2015) 102–112

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.01.013&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2015.01.013
mailto:mfoucaul@labri.fr
mailto:cteyton@labri.fr
mailto:davidlo@smu.edu.sg
mailto:xblanc@labri.fr
mailto:falleri@labri.fr
http://dx.doi.org/10.1016/j.infsof.2015.01.013
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


correlations between the CO metrics and the number of post-
release bugs. So far, our replication was not complete as we only
observed Java open-source software projects.

We therefore propose in this paper a deeper study that goes fur-
ther and that aims to generally question the usefulness of the CO
metrics for open-source software systems.

First of all, to overcome the limitation of our previous study, we
propose in this study a new dataset of open-source software
projects developed in several programming languages. Another
essential point strengthening the validity of our study is the
technique used to collect bug-related information: based on
previous research, we concluded that automatic techniques devel-
oped to measure the number of bugs per module are not accurate
nor precise enough [4–6], and therefore relied only on manually
crafted data.

Further, we push our investigation toward the relative impor-
tance of the CO metrics for estimating the number of bugs. Our
previous study only tries to observe a correlation between CO
metrics and number of bugs, and does not investigate on the
importance of these metrics in a model accounting for several vari-
ables. In this study we check their relative importance as compared
to metrics that are frequently used to measure the quality of a soft-
ware module, using an automatic technique called PMVD [7],
which evaluates the importance of each metric in a multiple linear
regression model, with the number of bugs as the dependent
variable.

In comparison to our previous study, we therefore propose the
new following contributions:

� A completely new dataset that contains open-source projects
developed in different programming languages, and manually
crafted bug-related data.
� New results of correlation between CO metrics and post release

bugs.
� An investigation on the relative importance of CO metrics.

This paper is structured as follows: Section 2 presents the foun-
dations of code ownership and the metrics related to it. Section 3
presents the detailed methodology of our study, including the con-
struction of the dataset. Section 4 presents the main results of our
study which shows that the usefulness of CO metrics is debatable
in case of open-source software systems. Section 5 presents the
threats to the validity of our study. Finally, Section 6 provides an
overview of the related work and Section 7 concludes this paper.

2. Background and theory

This section starts by presenting the code ownership (CO)
metrics that have been defined to measure to which extent
developers own software modules.

2.1. Ownership metrics

Before explaining how CO metrics are measured, we need to
define the model we use to represent a software development pro-
ject and define the pertinent concepts, such as software module
and developer contribution.

We assume that a software project is composed of a finite set of
software modules that are developed by a finite set of developers
who submit their code modifications by sending commits to a
shared code repository.

Each module is defined by a finite set of source code files. When
a developer modifies one of the files of a software module by
committing her work, she is contributing to that module. The
weight of the contribution made by a developer to a given module

can be measured with different metrics. Bird et al. [2] chose to
measure it by counting the number of files touched by the develop-
er. For example, if Alice contributes to a module by modifying three
files in a first commit and five files afterwards, she is contributing
with a weight of eight. Another possibility is to measure the weight
of a developer contribution by counting the number of line changes
performed by the developer, also called code churn [8].

In our formal definitions, we use D as the set of developers that
contribute to the project. For a given module, we define wd as the
weight of a developer d.

CO metrics mainly measure the ratio of contributions made by
one developer compared to the rest of the team. More formally, for
a given module, the ownership of a developer d is:

ownd ¼
wdP

d02Dðwd0 Þ

Bird et al. [2] proposed three ownership-based metrics that are
computed for each software module:

Most valued owner1 This score is the highest value of the ratio
of contributions performed by all developers. More formally, for a
given software module, its Most valued owner value (MVO) is

maxðfowndjd 2 DgÞ

Minor This score counts how many developers have a ratio of
contributions that is lower than 5%. Such developers are
considered to be minor contributors of the software module.
More formally, for a given software module, its Minor value is

jf0 < ownd 6 5%jd 2 Dgj

Major This score counts how many developers have a ratio of
contributions that is bigger than 5%. Such developers are con-
sidered to be major contributors of the software module. More
formally, for a given software module, its Major value is

jfownd > 5%jd 2 Dgj

Bird et al. showed that varying the 5% threshold used by the
metrics Minor and Major to other values from 2% to 10% did not
impact the results they obtained regarding the relationship
between code ownership and software quality.

2.2. Code ownership and software quality

When the amount of developers of a software system rises,
work must be divided between contributors. Whether a shared
or strong ownership is preferable is a matter of debate where
two theories come face to face. On the one hand the XP movement
[9] and Raymond [10] advocate shared ownership, and the latter
introduced ‘‘Linus’ Law’’, which states that ‘‘given enough eyeballs,
all bugs are shallow’’, i.e., increasing the number of contributors
accelerates the detection and correction of bugs. On the other hand
Bird et al. [2]. advocate for a strong ownership, and aim to confirm
the ‘‘too many cooks spoil the broth’’ theory stating that when the
number of developers increases, coordination in the development
efforts becomes too complex to ensure. Further, both theories are
backed by empirical findings: Rahman and Devanbu [11], consid-
ered ownership at the level of individual lines of code, and found
that code implicated in bugs was strongly associated to a single
developer’s contribution.

In this paper we focus on the second theory, and deeply
investigate on the Bird et al. CO metrics. As these metrics were only
validated on Microsoft software system, we here check their

1 This metric originally called ownership has been renamed here for sake of clarity.

M. Foucault et al. / Information and Software Technology 64 (2015) 102–112 103



Download English Version:

https://daneshyari.com/en/article/550994

Download Persian Version:

https://daneshyari.com/article/550994

Daneshyari.com

https://daneshyari.com/en/article/550994
https://daneshyari.com/article/550994
https://daneshyari.com

