
Automatic transformation of iterative loops into recursive methods

David Insa, Josep Silva ⇑
Departament de Sistemes Informàtics i Computació, Universitat Politècnica de València, Camino de Vera s/n, E-46022 Valencia, Spain

a r t i c l e i n f o

Article history:
Received 30 May 2013
Received in revised form 3 September 2014
Accepted 1 October 2014
Available online 29 October 2014

Keywords:
Program transformation
Iteration
Recursion

a b s t r a c t

Context: In software engineering, taking a good election between recursion and iteration is essential
because their efficiency and maintenance are different. In fact, developers often need to transform
iteration into recursion (e.g., in debugging, to decompose the call graph into iterations); thus, it is
quite surprising that there does not exist a public transformation from loops to recursion that can
be used in industrial projects (i.e., it is automatic, it handles all kinds of loops, it considers exceptions,
etc.).
Objective: This article describes an industrial algorithm implemented as a Java library able to auto-
matically transform iterative loops into equivalent recursive methods. The transformation is described
for the programming language Java, but it is general enough as to be adapted to many other lan-
guages that allow iteration and recursion.
Method: We describe the changes needed to transform loops of types while/do/for/foreach into recur-
sion. We provide a transformation schema for each kind of loop.
Results: Our algorithm is the first public transformation that can be used in industrial projects and
faces the whole Java language (i.e., it is fully automatic, it handles all kinds of loops, it considers
exceptions, it treats the control statements break and continue, it handles loop labels, it is able to
transform any number of nested loops, etc.). This is particularly interesting because some of these
features are missing in all previous work, probably, due to the complexity that their mixture intro-
duce in the transformation.
Conclusion: Developers should use a methodology when transforming code, specifically when trans-
forming loops into recursion. This article provides guidelines and algorithms that allow them to face
different problems such as exception handling. The implementation has been made publicly available
as open source.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Iteration and recursion are two different ways to reach the same
objective. In some paradigms, such as the functional or logic, iter-
ation does not even exist. In other paradigms, e.g., the imperative
or the object-oriented paradigm, the programmer can decide
which of them to use. However, they are not totally equivalent,
and sometimes it is desirable to use recursion, while other times
iteration is preferable. In particular, one of the most important dif-
ferences is the performance achieved by both of them. In general,
compilers have produced more efficient code for iteration, and this
is the reason why several transformations from recursion to

iteration exist (see, e.g., [12,16,18]). Recursion in contrast is known
to be more intuitive, reusable and debuggable. Another advantage
of recursion shows up in presence of hierarchized memories. In
fact, other researchers have obtained both theoretical and
experimental results showing significant performance benefits of
recursive algorithms on both uniprocessor hierarchies and on
shared-memory systems [20]. In particular, Gustavson and
Elmroth [4,10] have demonstrated significant performance bene-
fits from recursive versions of Cholesky and QR factorization, and
Gaussian elimination with pivoting.

Recently, a new technique for algorithmic debugging [15]
revealed that transforming all iterative loops into recursive
methods before starting the debugging session can improve the
interaction between the debugger and the programmer, and it
can also reduce the granularity of the errors found. In particular,
algorithmic debuggers only report buggy methods. Thus, a bug
inside a loop is reported as a bug in the whole method that con-
tains the loop, which is sometimes too imprecise. Transforming a

http://dx.doi.org/10.1016/j.infsof.2014.10.001
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +34 96 387 7007x73530.
E-mail addresses: dinsa@dsic.upv.es (D. Insa), jsilva@dsic.upv.es (J. Silva).
URLs: http://www.dsic.upv.es/~dinsa/ (D. Insa), http://www.dsic.upv.es/~jsilva/

(J. Silva).

Information and Software Technology 58 (2015) 95–109

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.10.001&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.10.001
mailto:dinsa@dsic.upv.es
mailto:jsilva@dsic.upv.es
http://www.dsic.upv.es/~dinsa/
http://www.dsic.upv.es/~jsilva/
http://dx.doi.org/10.1016/j.infsof.2014.10.001
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


loop into a recursive method allows the debugger to identify the
recursive method (and thus the loop) as buggy. Hence, we
wanted to implement this transformation and integrate it in
the Declarative Debugger for Java (DDJ), but, surprisingly, we
did not find any available transformation from iterative loops
into recursive methods for Java (neither for any other object-
oriented language). Therefore, we had to implement it by
ourselves and decided to automatize and generalize the transfor-
mation to make it publicly available. From the best of our
knowledge this is the first transformation for all kinds of
iterative loops. Moreover, our transformation handles exceptions
and accepts the use of any number of break and continue
statements (with or without labels).

One important property of our transformation is that it always
produces tail recursive methods [3]. This means that they can be
compiled to efficient code because the compiler only needs to
keep two activation records in the stack to execute the whole
loop [1,11]. Another important property is that each iteration is
always represented with one recursive call. This means that a
loop that performs 100 iterations is transformed into a recursive
method that performs 100 recursive calls. This equivalence
between iterations and recursive calls is very important for some
applications such as debugging, and it produces code that is more
maintainable.

The objective of this article is twofold. On the one hand, it is a
description of a transformation explained in such a way that one
can study the transformation of a specific construct (e.g., excep-
tions) without the need to see how other constructs such as
the statement return are transformed. This decomposition of the
transformation into independent parts can be very useful for
academic purposes. In particular, the paper describes the trans-
formation step by step using different sections to explain the
treatment of advanced features such as exception handling and
the use of labels. Because we are not aware of any other publicly
available description, some parts can help students and beginner
programmers to completely understand and exercise the relation
between iteration and recursion, while other more advanced
parts can be useful for the implementors of the transformation.
On the other hand, the proposed transformation has been imple-
mented as a publicly available library. From the best of our
knowledge, this is the first automatic transformation for an
object-oriented language that is complete (i.e., it accepts the
whole language).

Example 1.1. Transforming loops to recursion is necessary in
many situations (e.g., compilation to functional or logic languages,
algorithmic debugging, program understanding, memory hierar-
chies optimization, etc.). However, the transformation of a loop
into an equivalent recursive method is not trivial at all in the
general case. For this reason, there exist previous ad-hoc
implementations that cannot accept the whole language, or that
are even buggy. For instance, the transformation proposed in [7]
does not accept exceptions and it crashes in situations like the
following:

for (int i = 0; i < 10; i++)
for (int j = 0; j < 10; j++)

break;

due to a bug in the implementation. Consider the Java code in
Algorithm 1 that is not particularly complicated, but shows some
of the difficulties that can appear during a transformation.

Algorithm 1. Iterative loop with exceptions

1: public int example(int x) throws IOException {
2: loop1:
3: while (x < 10) {
4: try {
5: x = 42 / x;
6: } catch (Exception e) {break loop1;}
7: loop2:
8: for (int i = 1; i < x; i++)
9: if (x % i > 0);

10: throw new Exception1();
11: else continue loop1;
12: }
13: return x;
14:}

This algorithm contains two nested loops (while and for). There-
fore, it would be normally translated to recursion using three
methods, one for the original method example, one for the outer
loop loop1, and one for the inner loop loop2. However, the use of
exceptions and statements such as break and continue poses
restrictions on the implementation of these methods. For instance,
observe in line 11 that the control can pass from one loop to the
other due to the use of the label loop1. This forces the programmer
to implement some mechanism to record the values of all variables
shared by both loops and pass the control from one loop to the
other when this point is reached. Note also that this change in
the control could affect several levels (e.g., if a break is used in a
deeper loop). In addition, the use of exceptions imposes additional
difficulties. Observe for instance that the inner loop throws an
exception Exception1 in line 10. This exception could inherit from
IOException and thus it should be captured in method loop2 and
passed in some way to method loop1 that in turn should decide
if it catches the exception or passes it to method example that
would throw it. From the best of our knowledge, this example
cannot be translated to recursion by any of the already existing
transformations.

In the rest of the paper we present our transformation for all
kinds of loops in Java (i.e., while/do/for/foreach), and we describe
in detail the transformation for while loops. We start with an
illustrative example that provides the reader with a general view
of how the transformation works.

Example 1.2. Consider the Java code in Algorithm 2 that computes
the square root of the input argument.

Algorithm 2. Sqrt (iterative version)

1: public double sqrt(double x) {
2: if (x < 0)
3: return Double.NaN;
4: double b = x;
5: while (Math.abs(b ⁄ b - x) > 1e-12)
6: b = ((x / b) + b) / 2;
7: return b;
8: }

This algorithm implements a while-loop where each iteration
obtains a more accurate approximation of the square root of
variable x. The transformed code is depicted in Algorithm 3 that
implements the same functionality but replacing the while-loop
with a new recursive method sqrt loop.

96 D. Insa, J. Silva / Information and Software Technology 58 (2015) 95–109



Download English Version:

https://daneshyari.com/en/article/551034

Download Persian Version:

https://daneshyari.com/article/551034

Daneshyari.com

https://daneshyari.com/en/article/551034
https://daneshyari.com/article/551034
https://daneshyari.com

