Information and Software Technology 58 (2015) 250-258

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Contents lists available at ScienceDirect INFORMATION

SOFTWARE
TECHNOLOGY

On the probability distribution of faults in complex software systems

@ CrossMark

Tihana Galinac Grbac**, Darko Huljeni¢"

2 University of Rijeka, Vukovarska 58, HR-51000 Rijeka, Croatia
Y Ericsson Nikola Tesla, Krapinska 45, HR-10000 Zagreb, Croatia

ARTICLE INFO

Article history:

Received 4 February 2014

Received in revised form 16 June 2014
Accepted 18 June 2014

Available online 10 July 2014

Keywords:

Software fault distribution
Probability distribution
Non-linear regression
Complex software system
Empirical research

ABSTRACT

Context: There are several empirical principles related to the distribution of faults in a software system
(e.g. the Pareto principle) widely applied in practice and thoroughly studied in the software engineering
research providing evidence in their favor. However, the knowledge of the underlying probability distri-
bution of faults, that would enable a systematic approach and refinement of these principles, is still quite
limited.

Objective: In this paper we study the probability distribution of faults detected during verification in four
consecutive releases of a large-scale complex software system for the telecommunication exchanges. This
is the first such study analyzing closed software system, replicating two previous studies for open source
software.

Method: We take into consideration the Weibull, lognormal, double Pareto, Pareto, and Yule-Simon prob-
ability distributions, and investigate how well these distributions fit our empirical fault data using the
non-linear regression.

Results: The results indicate that the double Pareto distribution is the most likely choice for the under-
lying probability distribution. This is not consistent with the previous studies on open source software.
Conclusion: The study shows that understanding the probability distribution of faults in complex soft-
ware systems is more complicated than previously thought. Comparison with previous studies shows
that the fault distribution strongly depends on the environment, and only further replications would

make it possible to build up a general theory for a given context.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The knowledge of fault distributions in large-scale complex
software systems is very important for planning the quality assur-
ance activities. There are several empirical principles, widely
applied in software development practice, related to the distribu-
tion of faults. For example, the Pareto principle [1,2], also known
as the 20-80 rule, is one of the most popular among them. It states
that a majority of faults (80%) in a software system is contained in
a minority of software modules (20%). There is a lot of empirical
evidence in favor of this principle [3-7,2,8-10]. Another example
is the principle that the minority of modules containing the major-
ity of faults confines not too large portion of the system size.
Empirical evidence for this principle is obtained in [8-10].

All such principles ultimately depend on the underlying proba-
bility distribution of faults in a software system. However, the

* Corresponding author.
E-mail addresses: tihana.galinac@riteh.hr (T. Galinac Grbac), darko.huljenic@
ericsson.com (D. Huljenic).

http://dx.doi.org/10.1016/j.infsof.2014.06.014
0950-5849/© 2014 Elsevier B.V. All rights reserved.

converse is not true, that is, the fulfillment of a certain principle
does not determine the probability distribution uniquely. For
example, there are several distributions, besides the Pareto distri-
bution, that would result in the Pareto principle. In other words,
the empirical evidence in favor of some principle does not imply
information on the probability distribution, and, indeed, our
knowledge on the probability distribution of faults in software
systems is still quite limited.

Recently a lot of attention is put to the more general problem of
determining probability distributions of various metrics in soft-
ware engineering (see e.g. [11-13]). The final goal of all these
works, as well as this paper, is to refine the empirical principles
used in software engineering practice, and possibly even use the
precise knowledge of probability distributions to predict the
behavior of future releases of a complex software system.

The knowledge of the most appropriate probability distribution
fitting the empirical fault data in complex software systems would
enable more systematic approach and refinement of the Pareto prin-
ciple and other related principles used in the software development
practice. This line of thought is pursued in works of Zhang [14] and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.06.014&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.06.014
mailto:tihana.galinac@riteh.hr
mailto:darko.huljenic@ericsson.com
mailto:darko.huljenic@ericsson.com
http://dx.doi.org/10.1016/j.infsof.2014.06.014
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

T. Galinac Grbac, D. Huljeni¢/Information and Software Technology 58 (2015) 250-258 251

Concas et al. [15]. Both papers study the fault data for the open
source Eclipse system using the non-linear regression for fitting.

Zhang [14] compares how the Pareto and Weibull distributions
fit the data, and conclude that the Weibull distribution is signifi-
cantly better. As explained above, this is not contradictory to the
Pareto principle itself, since the Pareto principle does not imply
the underlying probability distribution.

Concas et al. [15] consider the Weibull, lognormal, double Par-
eto, and Yule-Simon distributions. The results reveal that, for the
Eclipse system, the Yule-Simon distribution provides better fit
than the others. The Weibull, lognormal, and double Pareto distri-
butions are quite close, although the Weibull distribution is the
worst in all five considered system releases. The authors argue fur-
ther in favor of the Yule-Simon, but also lognormal and double
Pareto distributions, since they all have a generative model, unlike
the Weibull distribution.

Motivated by these two papers on the Eclipse system, and the
importance of finding the most appropriate distribution, we study
the probability distribution of faults in a very different context,
that is, in four consecutive releases of the large-scale complex soft-
ware system for telecommunication exchanges. We consider all
distributions appearing in [14,15]. These are the Pareto, Weibull,
lognormal, double Pareto, and Yule-Simon distributions. As in
[14,15], the fitting method is the non-linear regression for the fault
data in the form of the complementary cumulative distribution
function (CCDF) of the random variable counting the number of
faults in a software module.

In reporting the results of non-linear regression we follow clo-
sely the exposition of [15] to simplify the comparison. Additionally
to the goodness-of-fit measures, we report the distribution param-
eters obtained for the best fits. These are not reported in [15], and
we can compare only to the Pareto and Weibull distribution fits of
[14]. We provide such detailed results, so that the replications of
this study for other software systems could be easily compared.

It turns out that the results are different from those of [14,15],
which can be explained by a very different context. In our study the
double Pareto distribution is the best fit to the fault count data. The
lognormal distribution is the second best, followed closely by
the Yule-Simon distribution, which is even slightly better in one
of the projects. Only then comes the Weibull distribution, while
the Pareto distribution is worse than others. However, the Pareto
distribution performs much better than reported by [14]. We hope
that this study will become a source of several replications in both
similar and different contexts, so that the most appropriate proba-
bility distributions of faults could be identified in different types of
software systems and development environments.

The paper is organized as follows. In Section 2 the context of the
study and the fault data are described in detail. Section 3 recalls
the considered probability distributions. The results of the non-lin-
ear regression fit are reported in Section 4. Section 7 concludes the

paper.

2. Context of the study

We describe in this section the context of this study including
the software system, the development organization, the software
development process, and the data collection performed for the
purpose of this study.

2.1. Software system

The study is undertaken on a sequence of four development
projects, denoted P1, P2, P3, P4, developing consecutive releases
of the same software product. The considered projects are the same
as in the study [10], except that the last two releases, denoted by

Rel n+3 and Rel n +4, are combined into project P4. The reason
is that the size of datasets from these two releases is too small
for a reliable fitting, and they are indeed two subprojects of the
same development project.

The software product is the software system for the Mobile
Switching Center (MSC), that is, a functional node in the Third Gen-
eration (3G) telecommunication network. The MSC node is built on
Ericsson’s AXE exchange that has evolved for more than 30 years
and is in operation in hundreds of exchanges all over the world.

The system is coded in Ericsson’s in-house Programming
Language for EXchanges (PLEX). It is a large-scale software system
with several millions lines of code (LOC). The software system
architecture is modular, involving more than 1000 software
modules.

2.2. Organization

The development organization is a globally distributed Erics-
son’s unit with long experience in software development for AXE
exchange. The number of involved development units varied dur-
ing the projects. A typical software development project involves
more then 300 developers world-wide and lasts for one to two
years.

2.3. Development and verification process

The software development process has evolved over the years
from the traditional waterfall model by introducing the incremen-
tal and iterative delivery and feature development. In this study we
concentrate on the faults detected during the testing part of verifi-
cation process, which consists of the function test (FT), system test
(ST) and system integration test (SI). The essential difference is in
the system coverage under the test. The function test covers func-
tional environment, that is, only software modules responsible for
the functional execution and is very often executed in the simu-
lated system environment. The system test covers essential system
environment for function integration, often executed on the test
plants, and the system integration test that covers all deployment
environment executed on the test plants.

The fault handling process consists of collection of trouble
reports (TR) issued whenever the failure occurs. It is very precise
and contains all the information required for fault analysis and
fault decision process. The same process is used during the soft-
ware verification and during the system in operation. The fault
handling process is a standard Ericsson’s process. TRs are stored
in a database, which can be easily searched.

For every failure that occurs during verification, one or more
TRs are issued. This is because there could be one or more faults
in the code responsible for the same failure. Hence, a TR is issued
for each location in the code (software module) that could contain
the fault causing the failure. These TRs are answered, and an
answer code is attached to the TR. The answer code indicates
whether the fault really exists and should be corrected, and
whether the fault is already corrected as a consequence of another
TR. Duplication of TRs could happen due to parallel testing activi-
ties and since the same fault could be a reason for several failures.
More precisely, for every fault in the code there is exactly one TR
with the answer code saying the fault should be corrected. Only
these TRs are included into our analysis and all duplicates were
excluded.

2.4. Data collection
As a result of the standard TR handling process all relevant data

regarding TR collection, analyzing and answering are stored in the
database.

Download English Version:

https://daneshyari.com/en/article/551042

Download Persian Version:

https://daneshyari.com/article/551042

Daneshyari.com

https://daneshyari.com/en/article/551042
https://daneshyari.com/article/551042
https://daneshyari.com

