
Approach for estimating similarity between procedures in differently
compiled binaries

Saša Stojanović, Zaharije Radivojević, Miloš Cvetanović ⇑
School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11000 Belgrade, Serbia

a r t i c l e i n f o

Article history:
Received 6 July 2013
Received in revised form 9 May 2014
Accepted 22 June 2014
Available online 2 July 2014

Keywords:
Software clone
Clone detection
Semantic clone
Software metric
Binary code analysis

a b s t r a c t

Context: Detection of an unauthorized use of a software library is a clone detection problem that in case
of commercial products has additional complexity due to the fact that only binary code is available.
Objective: The goal of this paper is to propose an approach for estimating the level of similarity between
the procedures originating from different binary codes. The assumption is that the clones in the binary
codes come from the use of a common software library that may be compiled with different toolsets.
Method: The approach uses a set of software metrics adapted from the high level languages and it also
extends the set with new metrics that take into account syntactical changes that are introduced by the
usage of different toolsets and optimizations. Moreover, the approach compares metric values and intro-
duces transformers and formulas that can use training data for production of measure of similarities
between the two procedures in binary codes. The approach has been evaluated on programs from STAMP
benchmark and BusyBox tool, compiled with different toolsets in different modes.
Results: The experiments with programs from STAMP benchmark show that detecting the same proce-
dures recall can be up to 1.44 times higher using new metrics. Knowledge about the used compiling tool-
set can bring up to 2.28 times improvement in recall. The experiment with BusyBox tool shows 43% recall
for 43% precision.
Conclusion: The most useful newly proposed metrics are those that consider the frequency of arithmetic
instructions, the number and frequency of occurrences for instructions, and the number of occurrences
for target addresses in calls. The best way to combine the results of comparing metrics is to use a geomet-
ric mean or when previous knowledge is available, to use an arithmetic mean with appropriate
transformer.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The pressure the market lays on the software industry implies a
need to reuse a software code and libraries [1]. In order to gain a
greater share of the market, software companies and engineers
make their code available to others [2]. The code can be made
available, free of charge, for a period of time (e.g. during develop-
ment), but after this period expires, a suitable fee is expected
(e.g. during production). A real-world motivating scenario for this
paper is the reuse of a software library in a commercial product
without an appropriate permission from the owner of the library.
A process of collecting evidences about the reuse is an activity of
finding a searched procedure that originates from the software
library, among target procedures extracted from the commercial

product. The target procedures are most likely available only as a
binary code. The binary code is a result of compilation with an
unknown toolset. Consequently, the searched procedure can
appear in a set of target procedures in a different, but semantically
equivalent form, known as a software clone.

Each of the differences between binary codes, introduced by
toolsets, can be considered as one out of four software clone types.
Two different toolsets can possibly translate a fragment of a source
code into exactly the same binary codes, namely software clones
type 1. Even though the same binary codes are produced by a com-
piler, if mapped differently by a linker, the final binary codes can
represent syntactically identical copies with potentially renamed
literals, or software clones type 2. Moreover, a compiler can intro-
duce modifications such as an instruction reorder or a recognition
of a dead code, leading to software clones type 3, that are defined
as copies with minor modifications such as changed, added, or
removed instructions. Similarly, the compiler can detect code frag-
ments that can be optimized if replaced by syntactically different

http://dx.doi.org/10.1016/j.infsof.2014.06.012
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +381 113218385; fax: +381 113248681.
E-mail addresses: stojsasa@etf.bg.ac.rs (S. Stojanović), zaki@etf.bg.ac.rs

(Z. Radivojević), cmilos@etf.bg.ac.rs (M. Cvetanović).

Information and Software Technology 58 (2015) 259–271

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.06.012&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.06.012
mailto:stojsasa@etf.bg.ac.rs
mailto:zaki@etf.bg.ac.rs
mailto:cmilos@etf.bg.ac.rs
http://dx.doi.org/10.1016/j.infsof.2014.06.012
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


code fragments that perform the same computation, named as
software clones type 4.

A clone detection is a technique that helps identify procedures
that are potential software clones [3]. The detection process com-
prises of two steps: the first one is to determine similarity between
considered procedures and the second one is to decide whether
considered procedures are actually clones. In the context of the
given scenario, the clone detection needs to be flexible and to
weight a recall more than a precision because a user is always will-
ing to tolerate some falsely identified clones in order to find the
true one. One way of achieving the flexibility of a clone detection
is to rank all the target procedures as potential clones based on
similarities with the searched procedure and let the user to make
a final decision.

This paper presents an approach, based on software metrics, for
estimating similarities between a procedure from one binary code
and a set of procedures from another binary code. Moreover, the
set of procedures is ranked according to estimated similarities in
order to find possible clones. The approach proposes new software
metrics obtained at the level of procedures, which take into
account syntactical changes introduced by different compiler opti-
mizations (clone types 2, 3 and 4). Moreover, the paper evaluates
different ways of combining new and existing metrics, and exam-
ines the contribution to the similarity detection success of each
combination. The evaluation is conducted through four experi-
ments. The first three experiments involve about 300,000 com-
pared procedure pairs, that originate from 5 benchmark
programs with over 1300 procedures in total, compiled with 5 dif-
ferent compilers using O3 optimization level without debug infor-
mation, and O0 optimization level without debug information. The
fourth experiment, based on a real world program, uses the same
setup extended with optimizations for size and speed and involves
over 1,500,000 compared procedure pairs.

The evaluation shows that adding proposed metrics to the
existing ones increases recall. Moreover, the experiments show
that recall depends on the used compiler and its options. The eval-
uation also shows that in comparison with some existing clone
detection tools, the proposed approach achieves higher recall with-
out degrading the precision.

The rest of the paper is organized as follows. Section 2 gives the
problem statement, assumptions, and research questions that will
be examined in the following sections. Section 3 provides a brief
overview of the existing techniques and representative tools
potentially applicable for detection of the software reuse in binary
codes. The proposed approach is described in Section 4, while the
conducted experiments and the empirical evaluation are presented
in Section 5. Section 6 concludes the paper.

2. Problem statement and assumptions

The scenario described in the introduction section can be stated
as a problem of estimating similarities between procedure A and
each procedure Bi from set B, and ranking procedures from set B
according to the estimated similarities. This paper considers the
problem under following assumptions: AS1. Procedures included
in set B are available only in binary code; AS2. The binary code
may not contain the symbol tables; AS3. Exactly one procedure Bi

has the same source code as procedure A; AS4. The differences
between procedure A and the corresponding procedure Bi come
from the use of different toolsets for compiling and linking
processes.

This paper proposes an approach that uses existing software
metrics, introduces new metrics, and defines how to combine
them. The approach is evaluated in terms of precision, recall and
a single measure that trades off between them, F-measure. The

paper explores three different research questions: RQ1. Does add-
ing new metrics to the existing metrics contribute to the recall in
first N ranked procedures? RQ2. Does the recall in the first N
ranked procedures achieved by the proposed approach depend
on a compiler, optimization level, and a problem context? RQ3.
Does the proposed approach achieve better results than the exist-
ing tools in terms of precision, recall, and F-measure?

3. Related work

Comparing procedures can be viewed from two different
aspects, when procedures originate from mostly identical or
mostly different binary codes. For example, in order to detect
potential vulnerabilities that might be exploited by malwares,
the original binary and the patched version of the same binary
are compared. However, in order to find similar procedures when
mostly different binary codes are compared, clone detection can
be applied on a level of procedures.

During vulnerability analysis, the differences between binary
codes introduced by compilers are of special interest. For example,
the framework described in [4] considers a register allocation,
instruction reordering and branch inversion. The framework cre-
ates a bijective mapping between the procedures for two com-
pared executables by improving iteratively a partial graph
isomorphism on the call-graphs of the executables, and after that
it does the same for basic blocks and flow-graphs. Another example
is malware analysis tool, BinSlayer [5], which besides a register
allocation and instruction reordering considers junk/do-nothing
code and obfuscating. BinSlayer calculates the differences between
two binaries by using algorithm that fuses the BinDiff algorithm
with the Hungarian algorithm for a bi-partite graph matching.
On the other hand, determining the similarities of executables in
the presence of obfuscating, addressed in [6], is done by computing
frequencies of opcodes and opcode sequences and by calculating a
discrimination ratio.

Considering clone detection shows that a large number of tools
are developed [7,8]. The tools can be evaluated according to differ-
ent properties, but from the aspect of this paper, the applicability
on a binary code and tolerance on the modifications introduced
by compilers are the most important ones. The applicability on a
binary code depends on a tool’s support for the low level languages
or a possibility of adaptation for such a support reflected through
language dependency and a needed effort. Tolerance on modifica-
tions introduced by a compiler mostly depends on a detection
technique used by a tool. Table 1 summarizes the properties of
the tools that depend on used detection technique and lists some
representative tools according to the results presented in the sur-
veys [9–11].

Most of the tools described in the literature listed below are
designed for the high level languages. But, their applicability on
binary code, or on an equivalent assembly code, requires some
adaptations at least on the input side for all tools, except for most
of the text based ones. A new lexer is needed for token based tools
and for most of the metrics based ones. Beside the new lexer, the
tools based on abstract syntax tree (AST) and program dependency
graph (PDG) also require a new parser. Depending on the used
metrics, a simplified parser may also be required in the case of
metrics based tools. Instead of aforementioned adaptations, the
appropriate decompiler could be used. Due to complexities
involved in decompilation process, the existing decompilers often
produce source code that cannot be compiled again, which may
be an issue for some clone detection tools.

The surveys also investigate the tools’ tolerance on different
types of modifications. Most of the existing tools are able to detect
software clones of type 1. Detection of type 2 software clones is

260 S. Stojanović et al. / Information and Software Technology 58 (2015) 259–271



Download	English	Version:

https://daneshyari.com/en/article/551043

Download	Persian	Version:

https://daneshyari.com/article/551043

Daneshyari.com

https://daneshyari.com/en/article/551043
https://daneshyari.com/article/551043
https://daneshyari.com/

