
A framework to identify primitives that represent usability within
Model-Driven Development methods

Jose Ignacio Panach a,⇑, Natalia Juristo b, Francisco Valverde c, Óscar Pastor c

a Escola Tècnica Superior d’Enginyeria, Departament d’Informàtica, Universitat de València, Avenida de la Universidad, s/n, Burjassot, 46100 Valencia, Spain
b Universidad Politécnica de Madrid, Campus de Montegancedo, 28660 Boadilla del Monte, Spain
c Centro de Investigación en Métodos de Producción de Software – ProS, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain

a r t i c l e i n f o

Article history:
Received 20 January 2014
Received in revised form 4 July 2014
Accepted 5 July 2014
Available online 22 July 2014

Keywords:
Model-Driven Development
Usability
Conceptual model

a b s t r a c t

Context: Nowadays, there are sound methods and tools which implement the Model-Driven Develop-
ment approach (MDD) satisfactorily. However, MDD approaches focus on representing and generating
code that represents functionality, behaviour and persistence, putting the interaction, and more specifi-
cally the usability, in a second place. If we aim to include usability features in a system developed with a
MDD tool, we need to extend manually the generated code.
Objective: This paper tackles how to include functional usability features (usability recommendations
strongly related to system functionality) in MDD through conceptual primitives.
Method: The approach consists of studying usability guidelines to identify usability properties that can be
represented in a conceptual model. Next, these new primitives are the input for a model compiler that
generates the code according to the characteristics expressed in them. An empirical study with 66
subjects was conducted to study the effect of including functional usability features regarding end users’
satisfaction and time to complete tasks. Moreover, we have compared the workload of two MDD analysts
including usability features by hand in the generated code versus including them through conceptual
primitives according to our approach.
Results: Results of the empirical study shows that after including usability features, end users’ satisfac-
tion improves while spent time does not change significantly. This justifies the use of usability features
in the software development process. Results of the comparison show that the workload required to
adapt the MDD method to support usability features through conceptual primitives is heavy. However,
once MDD supports these features, MDD analysts working with primitives are more efficient than
MDD analysts implementing these features manually.
Conclusion: This approach brings us a step closer to conceptual models where models represent not only
functionality, behaviour or persistence, but also usability features.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Model-Driven Development (MDD) paradigm [20] states
that all the analysts’ effort must be gathered in the conceptual
model and the system is implemented by means of transformation
rules that can be automated. In other words, the MDD paradigm
distinguishes between conceptual models (where analysts work)
and the code that implements the system (which can be generated
with as much automation as possible from the conceptual model).

Nowadays, there are several tools which implement the MDD
paradigm, such as WebRatio [2], UWE [19], NDT [9] and

OO-Method [29,28], among others. All these tools are very power-
ful to represent and generate the system functionality, behaviour
and persistency by means of conceptual models. However, in most
MDD methods, there is a lack of expressiveness to represent usabil-
ity features [1,24]. Nowadays, if these features are to be included in
systems developed by these MDD methods, the generated code
needs to be changed manually. These manual changes involve
some disadvantages:

� Changes in the code can be inconsistent with the characteristics
expressed in the conceptual model.
� Every time we regenerate the code from the conceptual model,

the manual changes to the code must be applied.
� Understanding the code to enhance the system usability can be

difficult for the analyst.

http://dx.doi.org/10.1016/j.infsof.2014.07.002
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: joigpana@uv.es (J.I. Panach), natalia@fi.upm.es (N. Juristo),

fvalverde@pros.upv.es (F. Valverde), opastor@pros.upv.es (Ó. Pastor).

Information and Software Technology 58 (2015) 338–354

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.07.002&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.07.002
mailto:joigpana@uv.es
mailto:natalia@fi.upm.es
mailto:fvalverde@pros.upv.es
mailto:opastor@pros.upv.es
http://dx.doi.org/10.1016/j.infsof.2014.07.002
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


In order to overcome all these problems, we propose including
usability features in a conceptual model similarly to what it is cur-
rently done with functionality, behaviour and persistency in most
MDD methods [18,34]. This proposal is a step forward to incorpo-
rate software systems characteristics not combined to date in MDD
methods. Note that the target audience of our proposal are analysts
that work frequently with MDD tools, since they are the persons
that tweak the code to support usability features nowadays. Our
approach does not deal with benefits or disadvantages of the
MDD paradigm versus a traditional method or how to improve
the learnability of novice users with MDD tools.

In the past, many SE authors considered usability as a non-
functional requirement [7]. Recently, however, some authors have
identified several usability features that are strongly related to
functionality [4,11,16]. We focus on these features, since they
affect not only interface but also the architecture, and are hard to
deal with unless they are considered from the early stages of devel-
opment. The contribution of our work is the definition of a process
to represent functional usability features in a conceptual model in
such a way that a model compiler can automatically generate their
code.

The benefits of incorporating functional usability features in a
MDD method through conceptual primitives are [35,36]:

� Unambiguously defined functional usability features. This is an
essential characteristic for performing model-to-model and
model-to-code transformations.
� Reduced development effort with respect to including usability

features by hand, since functional usability features are added
to the system code by a model compiler.
� Evolutions of usability requirements need to be applied to the

conceptual model only. Therefore, system will be able to evolve
more easily.

Our proposal to include usability features is valid for any MDD
method. However, it has been necessary to select a specific MDD
method to fully define our proposal. We have chosen OO-Method
[29,28], since it is supported by a commercial tool that is being reg-
ularly used to develop real systems by a company (INTEGRANOVA)
[6]. Such MDD tool generates fully functional systems from a con-
ceptual model. Another advantage of the MDD method used as
benchmark for our research is that its conceptual model is abstract
enough to straightforwardly add new primitives that represent
usability features.

This paper is the ongoing work of two previous publications:
[25,26]. Ref. [25] offers a first draft of the idea to represent func-
tional usability features in a conceptual model. The contribution
of this paper with regard to the previous one consists of: (1) A
more detailed definition of the procedure to include functional
usability features in a conceptual model; (2) A proof of concept
with different usability features in a real MDD tool. Ref. [26] is a
poster that introduces a short description of an experiment to
analyze the benefits of including functional usability features in a
system. The contribution of this paper with regard to the previous
one consists of: (1) an exhaustive description of the design, threats
and results of the experiment to know whether or not users’ satis-
faction and users’ efficiency improves after including functional
usability features in the systems; (2) a comparison of effort to
include functional usability features in a MDD method manually
with the effort to include them through conceptual primitives.

The paper is structured as follows. Section 2 introduces the
usability and MDD background necessary to understand our pro-
posal. Section 3 describes our proposal for adding usability features
to a MDD method. Section 4 illustrates the application of our pro-
posal to a specific MDD method. Section 5 discusses an experiment

to evaluate user satisfaction improvement applying our proposal.
Section 6 studies the improvement of the efficiency of analysts
working with functional usability features represented as concep-
tual primitives versus including them manually. Section 7 describes
related work. Finally, Section 8 presents some conclusions.

2. Background

The MDD paradigm aims to develop software using a concep-
tual model that abstractly represents the system under develop-
ment [20]. This conceptual model is the input for a model
compiler that generates the code implementing the system. Usu-
ally, this generation is performed by transformation rules that
are applied automatically. A MDD conceptual model is divided into
different views or models. View stands for the set of formal ele-
ments that describe something that has been built for a purpose.
For example, there can be a view to represent the user interaction,
another view to represent system functionality and another view
to represent information persistence. Views are composed of con-
ceptual primitives. Conceptual primitives are modelling elements
that have the capability of abstractly representing an aspect of
the system. Examples of conceptual primitives are class diagram
classes, class attributes and services, etc. The system is generated
from the conceptual model by a model compiler. The level of auto-
mation for code generation is more or less powerful depending on
the MDD method.

Usability is a very broad concept. According to ISO 9241-11
[14], usability is ‘‘the extent to which a product can be used by spec-
ified users to achieve specified goals with effectiveness, efficiency and
satisfaction in a specific context of use’’. Human–Computer Interac-
tion (HCI) literature provides many different recommendations to
improve software system usability. HCI recommendations can be
classified into three groups [16]:

� Usability recommendations with impact on the user interface
(UI). They refer to presentation issues which imply slight mod-
ifications of the UI design (e.g. buttons, pull-down menus, col-
ours, fonts, layout).
� Usability recommendations with impact on the development

process. To follow these advices the development process needs
to be tuned. For example, recommendations designed to reduce
the user cognitive load state that software development should
implicate users.
� Usability recommendations with high impact on architectural

design. They involve building certain functionalities into the
software in order to improve user-system interaction. This set
of usability recommendations are referred to as functional
usability features (FUF). Examples of such features are cancel,
undo and feedback facilities. Unless these features are consid-
ered from the early stages of the software development process,
it takes a lot of rework to build them into a software system [4].
We focus our approach on this group of recommendations.

Table 1 shows a summary of FUFs, the mechanisms into which
they are divided and their goals. We have selected four mecha-
nisms to illustrate here our approach (shaded in grey in Table 1).
This choice is based on the usefulness of the mechanisms for the
examples used in this paper.

As shown in [17], a full description and elicitation guidelines for
each and every FUF can be found at http://www.grise.upm.es/sites/
extras/2/. FUFs were derived from interaction patterns described in
the literature as [40,42,31]. FUFs contribute a detailed description
of how usability features affect the system architecture, whereas
interaction patterns only define how usability features affect the
system interface. Another difference between FUFs and interaction

J.I. Panach et al. / Information and Software Technology 58 (2015) 338–354 339

http://www.grise.upm.es/sites/extras/2/
http://www.grise.upm.es/sites/extras/2/


Download English Version:

https://daneshyari.com/en/article/551048

Download Persian Version:

https://daneshyari.com/article/551048

Daneshyari.com

https://daneshyari.com/en/article/551048
https://daneshyari.com/article/551048
https://daneshyari.com

