
Software defect prediction using ensemble learning on selected
features

Issam H. Laradji, Mohammad Alshayeb ⇑, Lahouari Ghouti
Information and Computer Science Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

a r t i c l e i n f o

Article history:
Received 4 February 2014
Received in revised form 22 May 2014
Accepted 8 July 2014
Available online 24 July 2014

Keywords:
Defect prediction
Ensemble learning
Software quality
Feature selection
Data imbalance
Feature redundancy/correlation

a b s t r a c t

Context: Several issues hinder software defect data including redundancy, correlation, feature irrelevance
and missing samples. It is also hard to ensure balanced distribution between data pertaining to defective
and non-defective software. In most experimental cases, data related to the latter software class is dom-
inantly present in the dataset.
Objective: The objectives of this paper are to demonstrate the positive effects of combining feature selec-
tion and ensemble learning on the performance of defect classification. Along with efficient feature selec-
tion, a new two-variant (with and without feature selection) ensemble learning algorithm is proposed to
provide robustness to both data imbalance and feature redundancy.
Method: We carefully combine selected ensemble learning models with efficient feature selection to
address these issues and mitigate their effects on the defect classification performance.
Results: Forward selection showed that only few features contribute to high area under the receiver-
operating curve (AUC). On the tested datasets, greedy forward selection (GFS) method outperformed
other feature selection techniques such as Pearson’s correlation. This suggests that features are highly
unstable. However, ensemble learners like random forests and the proposed algorithm, average probabil-
ity ensemble (APE), are not as affected by poor features as in the case of weighted support vector
machines (W-SVMs). Moreover, the APE model combined with greedy forward selection (enhanced
APE) achieved AUC values of approximately 1.0 for the NASA datasets: PC2, PC4, and MC1.
Conclusion: This paper shows that features of a software dataset must be carefully selected for accurate
classification of defective components. Furthermore, tackling the software data issues, mentioned above,
with the proposed combined learning model resulted in remarkable classification performance paving
the way for successful quality control.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

With the increasing impact of software applications on day-to-
day businesses and activities, software attribute prediction such as
effort estimation [1,2], maintainability [3,4], defect [5,6] and qual-
ity [7,8] classification are gaining growing interest from both aca-
demic and industry communities. Defective software components
have devastating consequences on increased development and
maintenance costs and declining customer satisfaction [9]. This
safety and reliability fact calls for the adoption of rigorous software
quality control processes. However, the scarcity of human and
financial resources dictates the need for cost-efficient approaches
to detect and repair defective components.

Research on software defect prediction emphasized the success
of many algorithms including decision trees [10,11], Bayesian
methods [12,13], and artificial neural networks multilayer percep-
trons (ANN-MLPs) [14]. However, these methods are sub-optimal
in the case of skewed and redundant defect datasets [15]. The pre-
diction performance of these methods gets worse when the defect
datasets contain incomplete or irrelevant features [16]. Classifiers
such as support vector machines (SVMs) [17] and ANN-MLPs
[18], biased towards the dominant class, tend to ignore the minor-
ity class which results in high false negative rates [19]. It is note-
worthy that ensemble learning models are very adequate to
address the data issues mentioned earlier. For instance, random
forests [20] outperforms the aforementioned algorithms in detect-
ing defective modules even though they are not tuned to directly
address imbalanced data [21]. In addition, the voting mechanism
in ensemble learning mitigates any residual effect attributed to
feature irrelevance and redundancy. This mitigation is carried out

http://dx.doi.org/10.1016/j.infsof.2014.07.005
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: g200790850@kfupm.edu.sa (I.H. Laradji), alshayeb@kfupm.

edu.sa (M. Alshayeb), lahouari@kfupm.edu.sa (L. Ghouti).

Information and Software Technology 58 (2015) 388–402

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.07.005&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.07.005
mailto:g200790850@kfupm.edu.sa
mailto:alshayeb@kfupm.edu.sa
mailto:alshayeb@kfupm.edu.sa
mailto:lahouari@kfupm.edu.sa
http://dx.doi.org/10.1016/j.infsof.2014.07.005
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


by assigning higher weights to individual classifiers that perform
well on the tested datasets. The robustness to irrelevant and
redundant features certainly enhances the prediction performance.
In fact, voting, in its simple form of averaging, ensures the mitiga-
tion of the noise effects, which boots the overall prediction
performance.

In this paper, we propose a software defect classification
method using an average probability ensemble (APE) learning
module. The proposed APE system incorporates seven classifiers:
random forests (RF), gradient boosting (GB), stochastic gradient
descent (SGD), weighted SVMs (W-SVMs), logistic regression
(LR), multinomial naive Bayes (MNB) and Bernoulli naive Bayes
(BNB). The base classifiers have been selected after extensive sim-
ulation validation as indicated in the sequel of the paper. It is
worth mentioning that some of these classifiers, such as the RF
and W-SVMs models, are considered ‘‘de-facto’’ classifiers in the
literature [22]. In addition, the variation in classification capabili-
ties of the base classifiers enable them to capture different statisti-
cal characteristics of the underlying data, which makes their
combination an added value for the proposed ensemble learning
model.

To further improve the classification performance of the pro-
posed ensemble classifier, efficient feature selection is combined
with the proposed ensemble model yielding an enhanced ensem-
ble classifier. This enhancement resulted in efficient handling of
redundant and irrelevant features in software defect datasets.

Therefore, the objectives of the paper are to demonstrate the
positive effect of feature selection on the performance of defect
classification and to propose a two-variant ensemble learning algo-
rithm which is robust to both data imbalance and feature redun-
dancy. In addition, the proposed two-variant ensemble algorithm
has exhibited stronger robustness to redundant and irrelevant fea-
tures, which constitutes a major contribution attributed to this
paper.

The paper is organized as follows: Section 2 summarizes the
related work. Section 3 gives a detailed description of the proposed
learning model for software defect prediction. In Section 4, we
describe the software defect datasets, the experimental setup and
results. Detailed analysis and discussion on the reported resulted
are given in Section 5. In Section 6, we present the threats to valid-
ity and finally, conclusions, along with suggestions for future work,
are given in Section 7.

2. Literature review

A detailed account of current related work is given below. First,
general prediction techniques are reviewed followed by a sum-
mary of sampling techniques that are used to properly handle data
imbalance. Then, an overview of commonly used cost-effective
classification techniques is given. The use of ensemble learning
models to remedy data imbalance is discussed afterwards. Finally,
approaches for feature selection are outlined before the section
concludes with a review of other defect classification methods.

2.1. General techniques

Decision trees [10,11], Bayesian methods [12], and ANNs [14]
have paved the way for machine learning-based methods in the
field of defect classification. These methods use software metrics
to properly classify defective software modules. However, it should
be noted that these methods often ignore the skewness and other
statistical characteristics of the defect datasets. Omitting such
characteristics substantially affects, in a negative way, the classifi-
cation performance [19]. Conventional methods, such as SVMs [17]
and Bayesian networks [12], generate models that tend to ignore

the minority class (defective modules usually) [19]. For instance,
for a given dataset with 0.5% defective components, a classification
accuracy of 99.5% can be achieved by simply classifying all compo-
nents as non-defective. However, the AUC measure of the receiver
operating characteristics (ROC) curve is 0.5 indicating that the
classifier is simply tossing the coin to classify the dataset.

2.2. Sampling techniques

Oversampling and under sampling are two well-known stan-
dard techniques commonly used to deal with imbalanced datasets
where the majority class is highly over-represented compared to
the minority class [21]. The former technique adds data duplicates
or synthetic samples to the minority class and data samples are
removed from the majority class in the latter sampling technique.
Moreover, results reported by Seiffert et al. [23] clearly indicate
that the use of data sampling techniques improves the classifica-
tion performance in the case of software defect prediction applica-
tions. However, it was reported that ensemble learning models,
combined with boosting, always outperform data sampling-based
defect classifiers in terms of classification accuracy [23].

In their experimental evaluation, Seiffert et al. [23] assessed the
performance of 50,000 classification models using 15 datasets with
five different sampling algorithms. While the best data sampling
technique yielded an AUC of 0.744, boosting-based ensemble
learning models achieved an AUC measure of 0.798. Pelayo and
Dick [24] investigated the use of two data stratification
approaches: (1) under-sampling and (2) over-sampling methods
for software defect prediction. Data pertaining to the minority
class was over-sampled to generate synthetic samples based on
the synthetic minority oversampling technique (SMOTE) method
[25]. Fewer samples were selected from the majority class by ran-
dom under-sampling. Their approach resulted in approximately
23% mean classification accuracy improvement. It is noteworthy
that over-sampling and under-sampling may lead to over-fitting
and removal of relevant samples, respectively.

2.3. Cost-sensitive methods

Although sampling techniques tend to balance the data distri-
bution properly, misclassifying different software defect classes
might have aggravated costs [9]. Errors occurring in data classifica-
tion can be cast into two types, namely, ‘‘Type-I’’ and ‘‘Type-II’’
[26]. The former quantifies the misclassification rates of defect-free
software components and the latter is concerned with the mis-
classification of defective ones. Needless to mention that Type-II
errors are more costly and, therefore, should be carefully looked
at. This consideration stems from the devastating costs that could
result from accepting a defective software component as defect-
free. Given these facts, Khoshgoftaar et al. [26] proposed a cost-
sensitive boosting technique that combines boosting ensemble
learning algorithm and cost-sensitivity feature. Cost-sensitivity
allows for the incorporation of a cost matrix that measures the
penalty that is incurred by misclassifying data samples. In addition,
the cost-sensitivity is reflected on the weight update of the classi-
fier, which takes place more aggressively when Type-II errors are
detected. In this way, higher penalty costs are assigned to the mis-
classification of defective software components.

Using the C4.5 decision tree as a base classifier, Quinlan
improved the classification performance compared to the original
boosting technique [27]. Another study is attributed to Zheng
[28] where three types of cost-sensitive prediction models were
compared. In all three models, boosted ANN techniques were used
consisting of 10 basic back-propagation ANN blocks with 11 hid-
den neurons each. Unlike fixed weight update schemes, the small-
est expected cost of misclassification (ECM) was achieved using the

I.H. Laradji et al. / Information and Software Technology 58 (2015) 388–402 389



Download English Version:

https://daneshyari.com/en/article/551051

Download Persian Version:

https://daneshyari.com/article/551051

Daneshyari.com

https://daneshyari.com/en/article/551051
https://daneshyari.com/article/551051
https://daneshyari.com

