
Infeasible path generalization in dynamic symbolic execution

Mickaël Delahaye a, Bernard Botella a, Arnaud Gotlieb b,⇑
a CEA LIST, Software Safety Laboratory, PC 174, 91191 Gif-sur-Yvette Cedex, France
b SIMULA Research Laboratory, Certus Software V&V Center, Lysaker, Norway

a r t i c l e i n f o

Article history:
Received 12 December 2013
Received in revised form 22 July 2014
Accepted 22 July 2014
Available online 1 August 2014

Keywords:
Dynamic symbolic execution
Explanation
Test input generation

a b s t r a c t

Context: Automatic code-based test input generation aims at generating a test suite ensuring good code
coverage. Dynamic Symbolic Execution (DSE) recently emerged as a strong code-based testing technique
to increase coverage by solving path conditions with a combination of symbolic constraint solving and
concrete executions.
Objective: When selecting paths in DSE for generating test inputs, some paths are actually detected as
being infeasible, meaning that no input can be found to exercize them. But, showing path infeasibility
instead of generating test inputs is costly and most effort could be saved in DSE by reusing path infeasi-
bility information.
Method: In this paper, we propose a method that takes opportunity of the detection of a single infeasible
path to generalize to a possibly infinite family of infeasible paths. The method first extracts an explana-
tion of path condition, that is, the reason of the path infeasibility. Then, it determines conditions, using
data dependency information, that paths must respect to exhibit the same infeasibility. Finally, it con-
structs an automaton matching the generalized infeasible paths.
Results: We implemented our method in a prototype tool called IPEG (Infeasible Path Explanation and
Generalization), for DSE of C programs. First experimental results obtained with IPEG show that our
approach can save considerable effort in DSE, when generating test inputs for increasing code coverage.
Conclusion: Infeasible path generalization allows test generation to know of numerous infeasible paths
ahead of time, and consequently to save the time needed to show their infeasibility.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Software testing is an essential part of today’s software
engineering, as the principal and often the only mean to ensure
software reliability. Among the techniques that permit one to
improve the quality of a test set, code-based testing, also known
as white-box testing, plays an important role. Code-based testing
implies the usage of the source code to select test inputs, to mea-
sure code coverage, to localize faults and eventually to propose
automatically bug repairs. These last years, code-based testing
has become more and more appealing with the emergence of
new techniques and powerful tools. However, modern effective
code-based testing has also a main limitation: high code coverage
is often difficult or costly to reach, without compromising the
efficiency of the technique. This paper is concerned with this chal-
lenge and describes a new cross-cutting technique that contributes
to handle this issue.

As said above, the field of code-based testing has seen the emer-
gence of new techniques and powerful tools, most of them being
based on Dynamic Symbolic Execution (e.g., PathCrawler [31],
DART [12], CUTE [27], SAGE [13] or PEX [28] just to name the pio-
neering tools). Dynamic Symbolic Execution (DSE) is a software
testing and analysis technique which starts by selecting and exe-
cuting a (feasible) path, by picking up a test input at random. Then,
it computes a path condition by symbolically evaluating the
instructions along the activated path. By refuting one decision of
that path and exploiting a constraint solver, DSE determines a
new test input which, by construction, covers another path in the
program under test. Said otherwise, DSE tries to uncover test
inputs which cover distinct paths that the ones that already cov-
ered, in order to increase path coverage. An important observation
concerns path selection: when a path is activated by a test input, it
is necessarily feasible but when a path is selected by refuting one
decision over a (feasible) path, then its feasibility is no more
guaranteed. Whenever DSE considers an infeasible path, then
the constraint solver tries to prove the unsatisfiability of the path
condition. Obviously, this task is not formally required and

http://dx.doi.org/10.1016/j.infsof.2014.07.012
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: mickael.delahaye@cea.fr (M. Delahaye), bernard.botella@cea.fr

(B. Botella), arnaud@simula.fr (A. Gotlieb).

Information and Software Technology 58 (2015) 403–418

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.07.012&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.07.012
mailto:mickael.delahaye@cea.fr
mailto:bernard.botella@cea.fr
mailto:arnaud@simula.fr
http://dx.doi.org/10.1016/j.infsof.2014.07.012
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


corresponds to a waste of time because the goal of DSE is to find
new test inputs, and not to report path infeasibility. Even if detect-
ing all the infeasible paths is impossible,1 studies have shown that
they are ubiquitous in computer programs [33] and that avoiding
them when testing programs is highly desirable [22].

As a simple motivating example, please consider the program of
Fig. 1. On this program, a typical DSE tool might stumble onto a lot
of infeasible paths, as shown on the run given in Fig. 2. In step (1),
an input is arbitrarily chosen (e.g., x ¼ 2), the program is executed,
and the activated path is traced (a b cf et f ef gf), as shown on the
figure. In step (2), the tool chooses a new path to cover (indicated
with dotted arrows) based on the current path using a depth-first
strategy. The tool computes a path condition for this new path
(indicated beside the path), and passes it on to a solver. The solver
answers negatively (indicated by an X). Indeed, the path condition
is inconsistent (2 6 x contradicts x < 1). In other words, the gener-
ation has met its first infeasible path a b cf et f ef gt h. In (3), the
tool tries to activate another path with the same method. This
time, the solver gives a solution to the path condition. This solution
(x ¼ 3) is used as input to a concrete execution of the program to
get a full activated path. This path iterates the loop one more time.
In (4), the tool tries to activate the statement h, and for the very
same reason as step (2), the attempt fails. And so on and so forth,
going deeper and deeper in the loop. Hopefully, the tool bounces
back either on an arbitrary limitation of the path length or the
maximal value of the data type (only for finite data type). After
covering a first path with no iteration in the loop, this hypothetical
tool indeed finds an input that activates the statement h. During
the test input generation, a lot of paths are proved infeasible.
Indeed, a manual code review lets us confirm that, if the control
flow passes through the ‘‘then’’ branch of the first conditional
and through at least one iteration in the loop, it cannot go into
the ‘‘then’’ branch of the second conditional. This family can be
represented by an automata given of Fig. 3. Every path for which
a prefix is recognized by the automata is necessarily infeasible.

Though one can argue another search strategy might perform
better on this particular example, such traps exist for every strat-
egy. Moreover, real programs do contain families of similar infea-
sible paths. Recommended programming practices, such as code
reuse, modularity, and assertions, are often source of possibly
redundant checks leading to numerous infeasible paths. As we will
see later, even well known algorithms possess such families of
infeasible paths.

Motivated by such cases, we propose in this paper a technique
that allows test input generators to detect early and to skip numer-
ous infeasible paths. This technique takes opportunity of the detec-
tion of an infeasible path by the test input generator to generalize

to a possibly infinite family of infeasible paths. The method con-
sists first of extracting the ‘‘essence’’ of the infeasibility from the
path condition. Then, by combining data dependency information
and finite state automaton operations, our approach constructs
an infeasible path automaton, a representation of an infeasible
path family of the program. Finally, this automaton can be used
to detect paths belonging to the family for the cost of matching a
regular expression.

To evaluate our approach, we developed a modular tool called
IPEG (Infeasible Path Explanation and Generalization) for programs
in C. It can be parametrized by any solving procedure. For our
experiments, we used three constraint solvers (i.e., Colibri, Yices
and Z3) that are currently used in dynamic symbolic execution
tools. We evaluated our approach at two levels. First, the unitary
evaluation checks the effectiveness of the generalization method
to prove path infeasibility against an exhaustive symbolic
execution. Second, an integrated evaluation checks how a naive
integration of the method in a test input generator affects the
performances. These experiments show that our approach can
save considerable computation time during test generation.

Paper organization. Section 2 gives essential notations and back-
ground notions to understand the infeasible path generalization
method. Section 3 presents the method in depth with a number
of examples. Notions such as data dependencies and infeasible
path automaton are introduced in this section. Section 4 discusses
the integration of the proposed method within a dynamic symbolic
execution procedure. Section 5 contains the results of our experi-
mental evaluation of method. Section 6 positions our proposed
method into state-of-the-art path infeasibility analyses. Finally,
Section 7 concludes the paper and draws a couple of perspectives
to this work.

2. Background and notations

This section first defines some notions and notations about
programs, paths and feasibility. Then, it introduces and reviews
the notion of constraint-based explanations.

2.1. Program and path

For the sake of clarity, we will use a simple imperative language
for representing programs. Fig. 1 gives a concrete example of the
syntax used in the paper. It is important to note that simple state-
ments (assignment or skip statement) and tests (that is, conditions
on loops and conditional constructs) are labeled.

A program path is a sequence of program statements allowed by
the flow relation defined on the studied language. In the paper, a
path is noted by a sequence of augmented labels on a particular
program. An augmented label is a label possibly followed by a letter,
t or f, to explicit the truth value, respectively true or false, when the
label points to a test. If x is an augmented label, label(x) denotes the
simple label (without any letter).

For instance, on the program of Fig. 1, a bt c ef gt h is a path that
does not enter the loop and goes through the ‘‘then’’ branches of
the two conditionals. Note however that the sequence a et i does
not respect the program’s control flow and as such is not to be con-
sidered a program path.

2.2. Feasibility and path condition

A program path is said to be feasible if there is at least one par-
ticular input that activates it. Conversely, a path is infeasible if there
is no input that activates it.

A path condition of a program path given a symbolic input vec-
tor is a conjunction of constraints on the symbolic input vector

Fig. 1. A program with many infeasible paths.

1 This problem was proved undecidable in general [30].

404 M. Delahaye et al. / Information and Software Technology 58 (2015) 403–418



Download English Version:

https://daneshyari.com/en/article/551052

Download Persian Version:

https://daneshyari.com/article/551052

Daneshyari.com

https://daneshyari.com/en/article/551052
https://daneshyari.com/article/551052
https://daneshyari.com

