
Search based algorithms for test sequence generation in functional
testing

Javier Ferrer a,⇑, Peter M. Kruse b, Francisco Chicano a, Enrique Alba a

a Departamento de Lenguajes y Ciencias de la Computación, University of Málaga, Spain
b Berner & Mattner Systemtechnik GmbH, Berlin, Germany

a r t i c l e i n f o

Article history:
Received 6 May 2013
Received in revised form 26 July 2014
Accepted 26 July 2014
Available online 7 August 2014

Keywords:
Functional testing
Classification Tree Method
Test sequence generation
Search Based Software Engineering
Genetic Algorithm
Ant Colony Optimization

a b s t r a c t

Context: The generation of dynamic test sequences from a formal specification, complementing
traditional testing methods in order to find errors in the source code.
Objective: In this paper we extend one specific combinatorial test approach, the Classification Tree
Method (CTM), with transition information to generate test sequences. Although we use CTM, this exten-
sion is also possible for any combinatorial testing method.
Method: The generation of minimal test sequences that fulfill the demanded coverage criteria is an
NP-hard problem. Therefore, search-based approaches are required to find such (near) optimal test
sequences.
Results: The experimental analysis compares the search-based technique with a greedy algorithm on a
set of 12 hierarchical concurrent models of programs extracted from the literature. Our proposed
search-based approaches (GTSG and ACOts) are able to generate test sequences by finding the shortest
valid path to achieve full class (state) and transition coverage.
Conclusion: The extended classification tree is useful for generating of test sequences. Moreover, the
experimental analysis reveals that our search-based approaches are better than the greedy deterministic
approach, especially in the most complex instances. All presented algorithms are actually integrated into
a professional tool for functional testing.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Software testing is a very important phase in the software
development life cycle the goal of which is to ensure a certain level
of software quality. The high economic impact of an inadequate
software testing infrastructure was detailed in a survey [1]. In
addition, it is estimated that half the time spent on software pro-
ject development and more than half its cost, is devoted to testing
the product [10]. The automation of test generation could reduce
the cost of the whole project, this explains why both the software
industry and academia are interested in automatic tools for testing.
As the generation of adequate tests implies a big computational
effort, search-based approaches are required to deal with this
problem. Nowadays, automatic software testing is one of the most
studied topics in the field of Search-Based Software Engineering
(SBSE) [16,27].

Evolutionary Algorithms (EAs) have been the most popular
search-based algorithms for generating test cases [27]. In fact, the
term evolutionary testing is used to refer to this approach. In the par-
adigm of structural testing a lot of research has been carried out
using EAs, but the use of search-based techniques in functional test-
ing is less frequent [36], the main cause being the implicit nature of
the specification, which is generally written in natural language.

Traditionally, the challenge has been to generate test suites to
completely test the software. Complete testing is not feasible for
arbitrarily large projects [21], so a good subset of all possible test
cases has to be selected. Combinatorial Interaction Testing (CIT)
[7] tries to address this problem. CIT approaches attempt to find a
minimal test suite which fulfills the desired coverage. Generally, this
task consists of generating, at least, all possible combinations of the
parameters’ values (this task is NP-hard [37]). The strength of the
testing approach, t-strength, depends on the number (t) of parame-
ters involved in the combinations (i.e., t = 2 for pairs, t = 3 for triples,
etc.). Although combinatorial testing has been widely studied, we
still find two main issues that have not been addressed by the
traditional generation of test suites: the dependencies between
individual test cases and the state of the software under test (SUT).

http://dx.doi.org/10.1016/j.infsof.2014.07.014
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +34 952133303.
E-mail addresses: ferrer@lcc.uma.es (J. Ferrer), peter.kruse@berner-mattner.com

(P.M. Kruse), chicano@lcc.uma.es (F. Chicano), eat@lcc.uma.es (E. Alba).

Information and Software Technology 58 (2015) 419–432

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.07.014&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.07.014
mailto:ferrer@lcc.uma.es
mailto:peter.kruse@berner-mattner.com
mailto:chicano@lcc.uma.es
mailto:eat@lcc.uma.es
http://dx.doi.org/10.1016/j.infsof.2014.07.014
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


Sometimes software is required to be in a particular state to
test a given functionality. This is the case of most programs.
Indeed, in very large software systems, the cost incurred to place
the system in a certain state can be an issue. For example, testing
the anti-lock braking system (ABS) of a car requires that the car
reaches a certain speed before the system can be tested. So it
makes sense to consider the generation of test sequences that
allow us to test a particular functionality (acceleration of the
car) while we change the state of the SUT (considering the depen-
dency rules in the test cases) to test the next functionality (ABS).
The implicit cost savings of using this technique is the reason why
the generation of test sequences is relevant and deserves more
research effort.

One CIT approach, the Classification Tree Method (CTM) [13] for
functional testing, is used for test planning and test design. This
method allows a systematic specification of the system under test
and its corresponding test cases can be created automatically using
CIT. Here, we extend the Classification Tree Method with transition
information in order to be able to find the shortest test sequences.

We present a couple of metaheuristic approaches for computing
optimal test sequences automatically. They are able to find near
optimal solutions using a reasonable amount of resources [5]. We
have compared the behavior of two metaheuristic techniques with
an existing greedy algorithm [22]. The first proposed approach is a
Genetic Algorithm (GA) called Genetic Test Sequence Generator
(GTSG). We have improved a GTSG with the addition of a memory
operator (MemO), which is based on the operator proposed by Alba
et al. [3]. It is used to reduce the amount of resources needed to
compute a solution.

The other proposed algorithm is an Ant Colony Optimization
(ACO) [9]. Specifically, we propose a new technique based on an
ACO algorithm that is able to deal with large construction graphs.
It is able to find near-optimal solutions in separated areas of the
search space for the Test Sequence Generation Problem (TSGP). It
is called ACO for test sequence generation (ACOts). Both proposed
metaheuristic approaches are used in our approach to generate test
sequences to obtain full class and transition coverage of 12 differ-
ent programs extracted from the literature. The main contributions
of our approach are:

� We extend CTM in order to automatically generate test
sequences. We formally define the Extended Classification Tree
Method. Other combinatorial testing methods could be
extended in the same way. The definition of an extended CTM
could be done by a professional tool called CTE XL (see Fig. 3).
� We present an evolutionary test sequence generator for the

CTM using a GA with a memory operator (MemO). In addition,
we propose a new technique based on ACO (ACOts). These
approaches can compute test sequences for full class and tran-
sition coverage without having to know the length of the
sequences in advance.
� We perform an experimental analysis using 12 software models

and comparing three different techniques.

The remainder of the paper is organized as follows. In Section 2
we present the background to the Classification Tree Method: how
it is designed, how we have extended it and what is the adequacy
criterion, and we briefly describe the CTE professional tool. Section
3 describes the Test Sequence Generation Problem and, then, it
defines an extension of the classification tree in order to deal with
test sequences. Section 4 presents our GTSG, ACOts, and outlines a
deterministic greedy algorithm re-implemented for comparison
purposes. Section 5 is devoted to presenting the benchmark of pro-
grams and analyzing the results of the three approaches. Section 7
surveys related work. Finally, in Section 8 some conclusions and
future work are outlined.

2. The Classification Tree Method

The Classification Tree Method [13] is intended for systematic
and traceable test case identification for functional testing over
all testing levels (for example, component test or system test). It
is based on the category partition method [31], which divides a test
domain into disjoint classes representing important aspects of the
test object. These classes can be seen as the states of the SUT.
Applying the Classification Tree Method involves two steps:
designing the classification tree and defining test cases. In addition,
the extension of the Classification Tree Method and the coverage
criteria are also described in this section.

2.1. Design of the classification tree

The classification tree is based on the functional specification of
the test object. For each aspect of interest (called classification), the
input domain is divided into disjoint subsets (called classes). Fig. 1
illustrates the concept of classification tree with a simple example
for a video game. Two aspects of interest (Game and Pause) have
been identified for the system under test. The classifications are
refined into classes which represent the partitioning of the con-
crete input values. These partitions can also be further refined by
introducing new low-level classifications and classes. In our exam-
ple the refinement aspect Playing is identified for the class running-
Game and it is divided into a further two classes startup, and
controlling.

Given the classification tree, test cases can be defined by com-
bining classes from different classifications. Since classifications
only contain disjoint values, test cases cannot contain several clas-
ses of one classification. A test case for the running example is:

Game : runningGameðPlaying : startupÞ; Pause : running:

in which class running is selected from classification Pause and run-
ningGame is selected from Game. Since class runningGame has an
inner classification, Playing, we have to select a class from it, this
class is startup in our case.

A test sequence is an ordered list of test cases or test steps
which could be sequentially visited with the aim of completely
testing the functionality of the whole system.

2.2. Extensions of the classification tree

The classification tree defined in the previous section can be
used to design test cases in isolation. However, the test object
can have operations related to transitions between classes in the
classification tree and executing these transitions is the only way
we can reach a given state (test case) of the object. Let us take
our video game example and let us imagine that we need to exe-
cute some code when the user changes the state of the object from
starting game to running game. These operations can be modeled by
extending the Classification Tree Method with transitions between

Fig. 1. Example of classification tree: video game classification tree.

420 J. Ferrer et al. / Information and Software Technology 58 (2015) 419–432



Download English Version:

https://daneshyari.com/en/article/551053

Download Persian Version:

https://daneshyari.com/article/551053

Daneshyari.com

https://daneshyari.com/en/article/551053
https://daneshyari.com/article/551053
https://daneshyari.com

