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Biological processes at their most fundamental molecular

aspects are defined by molecular interactions with ligand–

protein interactions in particular at the core of cellular functions

such as metabolism and signalling. Divergent and convergent

processes shape the evolution of ligand binding sites. The

competition between similar ligands and binding sites across

protein families create evolutionary pressures that affect the

specificity and selectivity of interactions. This short review

showcases recent studies of the evolution of ligand binding-

sites and methods used to detect binding-site similarities.
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Introduction
The study of the evolution of ligand binding-sites in

proteins, most notably enzymes has greatly benefited

from our understanding of the evolution of protein struc-

ture [1–3] and function [4] as well as the availability of

methods for the detection of binding-site similarities [5].

In recent years, insights on the evolution of protein

function both as a result of divergent and convergent

evolutionary processes have been the result of top-down

and bottom-up approaches. Top-down approaches using

the amassed available data in public repositories and

efficient computational methods to perform large scale

analyses clarified the relationship and extent of evolu-

tionary connections between enzyme families whereas

bottom-up approaches, particularly experimental

approaches using directed evolution as a probing tool

permitted to probe functional changes and evolutionary

pathways in great detail. Recent breakthroughs include

the understanding of the evolution of catalytic mecha-

nisms across enzyme superfamilies and the appreciation

of the role of convergent evolution. This short review

focuses on small-molecule binding-sites but many of the

ideas may be applicable to the evolution of protein–
protein interactions [6].

Methods for the detection of binding-site
similarities
Over the years a large number of methods to detect

binding-site similarities have been developed. Only a

few are presented here as representatives of the

approaches mentioned. Different methods can be cate-

gorized according to the level of detail used to represent

binding-sites, the methodology used to search for simi-

larities and the scoring scheme (Table 1).

The detection of binding-site similarities depends on the

capacity to detect or define binding-sites. Research on the

detection of binding-sites aims in general at identifying

cavities that are either biologically relevant (e.g., known

to bind a ligand or allosterically affecting binding) or

‘druggable’. A number of methods exist for such a pur-

pose, from purely geometric such as PASS [7], SURF-

NET [8] and its modern implementation within the

NRGsuite PyMOL plugin [9] to methodologies that

consider additional information such as evolutionary con-

servation [10] or energetic considerations as exemplified

by PocketFinder [11]. The resulting cavities detected

with any of the methods above (among others) can be

used as input for the detection of similarities.

Representation. At a most basic or reduced level of repre-

sentation, one can map binding-site residues onto the

primary sequence and use pairwise or multiple sequence

alignments to define a Tanimoto coefficient of binding-

site sequence identity [12]. In other words, one can count

the number of identical aligned binding-site residues c
and normalize that number by the number of residues in

either binding-site (a and b respectively) to obtain a

Tanimoto score (c/(a + b � c)). The eMatchSite algorithm

goes a step further and creates sequence order-indepen-

dent alignments of ligand binding-sites [13]. Considering

the Functionalist principle discussed below, different

methods representing binding-sites at increasing levels

of biological complexity aim at detecting similarities that

capture the biological information responsible for higher

levels of conservation. Climbing the representation com-

plexity ladder, at the level of structure we find a number

of approaches to represent binding-sites, from C-alpha

atoms and microenvironments to all-atom representa-

tions. PSILO [14], SOIPPA [15] as well as the C-alpha

mode of IsoCleft [16,17] represent binding-sites via

C-alpha atoms. APoc represents binding-sites utilizing

the C-alpha and C-beta atoms as well as a classification

of amino-acids into 8 classes [18]. Pre-defined atomic
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pseudo-centres aim at capturing the presence of impor-

tant interacting groups while decreasing the number of

objects that need to be compared. Representative meth-

ods of this approach are CavBase [19] and SiteEngine

[20]. PocketFEATURE [21] defines microenvironments

at specific geometric centres of residues and calculated

physico-chemical properties associated with the atoms

present in concentric shells at different radii. The all-

atom mode of IsoCleft [16,17] uses all non-hydrogen

atoms to represent binding-sites. Further still in the

complexity-representation ladder, we find methods that

represent binding-sites by the potential interactions that

could be made with particular chemical probes at differ-

ent positions within the volume of the cavity using

potential energy functions to define molecular interaction

fields (MIFs). Notable methods in this category are

GRID-FLAP [22] and IsoMIF [23�,24]. The potential

advantage of using MIFs rather than the specific positions

of atoms or associated properties at the molecular surface

is to account for different binding-site residue configura-

tions that do not affect binding or cases where small

differences can have drastic effects.

Search and scoring. In addition to representation, the other

two pillars of any optimization problem are the method

used for searching for solutions (in this case similarities

between the binding-sites) and the scoring scheme. Pre-

dominantly used search algorithms are geometric hashing

[25], graph matching [26] and exhaustive enumeration.

The choice of method and its implementation depends

on the type of representation used as that generally

dictates the size of the search space. Different distance

measures can be used to quantify similarity such as the

Tanimoto score, root mean square distance (RMSD) of

the identified similarities after superimposition, and sur-

face overlap (Table 1).

Performance. Despite the same purpose of detecting bind-

ing-site similarities, the different methods in Table 1

were developed with slightly different applications in

mind and therefore were evaluated using tailor-made

datasets. It would be interesting to add to this list of

‘benchmark’ datasets the Shoichet dataset discussed

above [27��]. As reported in [23�], different methods

perform well on particular datasets but poorly on others,

with eMatchSite and IsoMIF having the largest average

Area Under the receiver-operator Curve (AUC) across

datasets at around 0.80. It is interesting to note that the

two methods at the extremes of the scale of biological

complexity representation discussed above have the best

performance. However, unlike eMatchSite, IsoMIF dis-

plays a very low AUC variance, thus its performance is

more robust across datasets. The wide variance in perfor-

mance across datasets suggests that using multiple data-

sets is beneficial. Thus, the lack of any single ultimate

benchmark dataset is a situation that should be main-

tained. Instead of a single benchmark dataset, even more

benchmarking datasets should be used as part of a bench-

mark dataset pool. Whereas the advantages of such an

approach are clear within the realm of methods for the

detection of binding-site similarities, another field that

would drastically benefit from such an approach is that of

small-molecule docking simulation methods where

benchmarking is dominated by the use of the Astex

datasets [28,29] but different methods clearly vary in

their performance when tested on different datasets [30].
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Table 1

A compilation of methods for the detection of binding-site similarities

Method Representation Search Scoring

eMatchSitea [13] Sequence Geometric hashing Correlation

PSILOb [14] C-alpha atoms Exhaustive RMSD

SOIPPAc [15] C-alpha atoms Graph matching Profile distance

IsoCleftd [16,17] All-atoms Graph matching Tanimoto/volume

APoce [18] C-alpha C-beta atoms and sequence Structural alignment PS-score

CavBasef [19] Pseudo-centres Graph matching Surface overlap

SiteEngineg [20] Pseudo-centres Geometric hashing Surface overlap

PocketFEATUREh [21] Microenvironments Exhaustive Tanimoto score

GRID-FLAPi [22] MIFs Exhaustive Volume overlap

IsoMIFj [23�,24] MIFs Graph matching Tanimoto/volume

a Free source code and web-accessible at http://www.brylinski.org/ematchsite.
b Commercially available, Chemical Computing Group.
c Source code available as part of SMAP at www.compsci.hunter.cuny.edu/�leixie/smap/smap and web interface: www.bioinfo.cs.pu.edu.tw/

cloud-PLBS.
d Free source code and web-accessible at www.bcb.med.usherbrooke.ca/icfi.
e Source code freely available at http://cssb.biology.gatech.edu/APoc.
f Unknown availability.
g Free source code for non-commercial users and web-accessible at www.bioinfo3d.cs.tau.ac.il/SiteEngine.
h Free source available at www.simtk.org/projects/pocketfeature.
i Commercially available, Molecular Discovery.
j Free source code and web-accessible at www.bcb.med.usherbrooke.ca/isomif.
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