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Aggregation can be thought of as a form of protein folding in

which intermolecular associations lead to the formation of large,

insoluble assemblies. Various types of aggregates can be

differentiated by their internal structures and gross

morphologies (e.g., fibrillar or amorphous), and the ability to

accurately predict the likelihood of their formation by a given

polypeptide is of great practical utility in the fields of biology

(including the study of disease), biotechnology, and biomaterials

research. Here we review aggregation/solubility prediction

methods and selected applications thereof. The development of

increasingly sophisticated methods that incorporate knowledge

of conformations possibly adopted by aggregating polypeptide

monomers and predict the internal structure of aggregates is

improving the accuracy of the predictions and continually

expanding the range of applications.
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Introduction
Aggregation can be defined as protein self-association that

results in large, insoluble assemblies. The accurate pre-

diction of protein aggregation and solubility is of signifi-

cant practical utility in the production of recombinant

proteins for research and biotechnological purposes [1],

exploration of the properties of natural and engineered

protein assemblies [2], the formulation of biopharmaceu-

ticals [3], and in the context of protein misfolding-related

disease [4]. Here we review recent developments in the

field of aggregation/solubility prediction, including

computational methods, their bases and selected applica-

tions. The successes and limitations of these methods

reveal much about the extent of our understanding of

the relationships between protein sequence, structure,

and solubility. Many methods have proven capable of

identifying aggregation prone regions (APRs). A few also

consider the exposure of APRs in near-native structures or

the predicted thermodynamic stability of the native state;

however, insights into the mechanisms and consequences

of APR exposure due to full or partial unfolding that are

general enough to be incorporated into predictive meth-

ods remain elusive.

Although protein aggregation is a complicated phenome-

non, many fundamental aspects are understood. It occurs

as a result of the same influences responsible for ‘normal’

protein folding (i.e., to the soluble native state) [5]; thus,

aggregation can be thought of as folding to an alternate

state with features common to almost all thermodynami-

cally stable protein conformations: relative compactness,

substantial desolvation of hydrophobic side chains, and

the satisfaction of many potential hydrogen bonds. A

classic example is the amyloid fibril, a type of protein

aggregate with a high degree of long-range order, exten-

sive intermolecular (b-sheet) hydrogen bonding, and a

well-packed core [6]. More generally, the degree of long-

range order within aggregates may vary, and the confor-

mations adopted by the constituent monomers may in-

clude native, native-like, and/or non-native secondary/

tertiary structure. Gross aggregate morphologies range

from fibrillar to amorphous, and a given polypeptide

can form structurally distinct aggregates that may propa-

gate in a prion-like fashion [7]. Furthermore, in vivo
aggregation can involve additional complications such

as macromolecular crowding and the activity of chaper-

ones or proteases [8]; the impacts of such factors may be

implicitly incorporated into predictive methods based on

data from in vivo experiments.

The development of protein aggregation/solubility predic-

tion methods has been underway for several decades, and

continues to be an active area of research (Table 1). Over

this time, many methodological improvements have been

driven by the accumulation of fundamental insights into

the thermodynamics [9] and kinetics [10�] of aggregation,

the realization that short sequence segments may deter-

mine aggregation propensity [11,12], and advances in the

modeling and simulation of dynamic aggregation-prone

surface exposure [13�,14,15��]. Progress in the develop-

ment of increasingly sophisticated prediction methods is

described below (Table 1), along with selected applica-

tions that illustrate the utility of the methods (Table 2).

Collectively, the aggregation/solubility prediction meth-

ods reviewed here have been applied to diverse problems,
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such as computationally screening biotherapeutics for

solubility [16], exploring the determinants of solubility

in the E. coli proteome [17–20], and enhancing the solu-

bility of aggregation-prone proteins through mutations

[13�,14,21–26] and strategic glycosylation [27]. In the

sections that follow, we group these methods into three

broad categories: first, statistical analyses and machine

learning algorithms that abstract aggregation-related fea-

tures from the amino acid sequences of proteins with

known aggregation propensities, second, ‘sliding window’
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Table 1

Solubility/aggregation prediction algorithmsa

Method Year Basis of prediction Ref.

Amino acid composition-based algorithms

Chiti-Dobson 2003 The natural logarithm of the ratio between mutant and wild-type aggregation rates predicted

by the weighted sum of change in hydrophobicity, change in secondary structure

propensity, and change in net charge

[10�]

Price-Hunt 2011 Statistical analysis of high-throughput expression of proteins by the Northeast Structural

Genomics Consortium

[31�]

SCM 2012 Dipeptide solubility scoring matrix [28]

PROSO II 2012 Two-layer architecture in which the output of a Parzen window model for sequence

similarity and an amino acid composition logistic regression classifier feed into a second

logistic regression classifier

[18]

Samak-Wang 2012 SVM and RF classifiers trained on the data from [17] and used in combination [19]

CCSOL 2012 SVM trained to discriminate between soluble and insoluble proteins in the data from [17] [20]

Niu-Li 2014 SVM solubility predictions based on pseudo amino acid composition models with features

including CGRs and Shannon entropy

[36]

PON-Sol 2016 Effect of amino acid substitutions predicted using a three-class (solubility increasing,

decreasing, or unchanged), two-layer RF classifier

[29]

Sliding window/pattern-based algorithms

TANGO 2004 Percent occupancy of major conformational states (including b-aggregate) predicted for

each residue

[23]

3D Profile (ZipperDB) 2006 Compatibility of sequence segments with the conformation adopted by the NNQQNY

hexapeptide in cross-b protofibrils

[22]

PASTA 2007 Statistical analysis of residue pairings between adjacent b-strands in known structures [48]

AGGRESCAN 2007 Sliding window average of aggregation propensity scores for amino acids derived from

measurements of intracellular aggregation by Ab42 mutants

[21]

Zyggregator 2008 Sliding window average of aggregation propensity scores adjusted for gatekeepers and

alternating patterns of hydrophobic and hydrophilic residues

[25]

FoldAmyloid 2010 Sliding window average of amino acid packing density and hydrogen bond probability

scores

[24]

Waltz 2010 PSSM derived from amyloidogenic hexapeptides, physicochemical properties, and

structural modeling using amyloid backbone structures

[51]

AmyloidMutants 2011 Supersecondary structure prediction enables discrimination between different amyloid

configurations, with optional mutational analysis

[56]

ESPRESSO 2013 Binary classification of sequences using predicted (secondary) structural properties and

sequence pattern-based methods

[40]

PASTA 2.0 2014 Statistical analysis of residue pairings between adjacent b-strands in known structures [38]

FISH Amyloid 2014 Binary classification of sequence segments using a discriminative pattern of site-specific

co-occurrences of residue pairs in known amyloidogenic hexapeptides

[39]

CamSol 2015 Sliding window average of aggregation propensity scores adjusted for gatekeepers and

alternating patterns of hydrophobic and hydrophilic residues

[26]

Tertiary/quaternary structure-based algorithms

SAP 2009 Effective dynamically exposed hydrophobic surface patches determined by structural

analysis and short MD simulations

[13�]

Chan-Warwicker 2013 Correlation between positively charged surface patches and insoluble expression,

particularly when the patch is enriched in arginine relative to lysine

[72�]

CamSol 2015 Zyggregator-like sequence-based predictions [25] projected onto a 3D structure and

adjusted for solvent exposure and the influence of other residues within an 8 Åradius

[26]

AGGRESCAN3D 2015 AGGRESCAN sequence-based predictions [21] projected onto a 3D structure and adjusted

for solvent exposure and the influence of other residues within a 10 Åradius; optional

simulation of dynamic exposure using CABS-flex [70�]

[14]

Schaller-Middleberg 2015 Parameters recorded during MD simulations of thermal unfolding at 498 K used as input for

an SVM classifier

[15��]

a Developed or applied (in published literature) between 2011 and 2016 inclusive.
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