Accepted Manuscript

Title: Hypoxia Decreases ROS level in human fibroblasts

Authors: G. Sgarbi, G. Gorini, A. Costanzini, S. Barbato, G.

Solaini, A. Baracca

PII: S1357-2725(17)30095-X

DOI: http://dx.doi.org/doi:10.1016/j.biocel.2017.05.005

Reference: BC 5121

To appear in: The International Journal of Biochemistry & Cell Biology

Received date: 16-12-2016 Revised date: 24-3-2017 Accepted date: 4-5-2017

Please cite this article as: Sgarbi, G., Gorini, G., Costanzini, A., Barbato, S., Solaini, G., & Baracca, A., Hypoxia Decreases ROS level in human fibroblasts. *International Journal of Biochemistry and Cell Biology* http://dx.doi.org/10.1016/j.biocel.2017.05.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

HYPOXIA DECREASES ROS LEVEL IN HUMAN FIBROBLASTS

Sgarbi[§] G, Gorini[§] G, Costanzini A, Barbato S, Solaini* G, and Baracca* A

Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy

* Corresponding authors:

Prof. Alessandra Baracca: Department of Biomedical and Neuromotor Sciences, University of

Bologna, via Irnerio 48, 40126 Bologna, Italy

Tel: +39 051 2091244

Fax: + 39 051 20911224

e-mail: alessandra.baracca@unibo.it

Prof. Giancarlo Solaini: Department of Biomedical and Neuromotor Sciences, University of

Bologna, via Irnerio 48, 40126 Bologna, Italy

Tel: +39 051 2091215

Fax: + 39 051 20911224

e-mail: giancarlo.solaini@unibo.it

Abbreviations

BNIP3: BCL2/adenovirus E1B 19kDa protein-interacting protein 3; CM-H₂DCFDA: chloromethyl-2',7'-dichlorodihydrofluorescein diacetate; $\Delta\psi_m$: mitochondrial membrane potential; DTNB: 5,5'-dithiobis-(2-nitrobenzoic acid); FCCP: carbonyl cyanide p-(trifluoro-methoxy)-phenylhydrazone; GPX1: glutathione peroxidase 1; GSH and GSSG: reduced and oxidized glutathione, respectively; HBSS: Hank's Balanced Salt Solution; HIF-1 α : hypoxia-inducible transcription factor 1 α ; IMS: intermembrane mitochondrial space; NAC: N-acetyl-L-cysteine; NBT: nitrotetrazolium blue chloride; OXPHOS: oxidative phosphorylation; PMSF: phenylmethylsulfonyl fluoride; ROS: reactive oxygen species; SODs: superoxide dismutases; TMRM: tetramethylrhodamine methyl ester.

[§] These authors contributed equally to this work

Download English Version:

https://daneshyari.com/en/article/5511379

Download Persian Version:

https://daneshyari.com/article/5511379

<u>Daneshyari.com</u>